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ABSTRACT

Meter induction has been an important topic in the
computational modeling of music cognition for quite some
time now. In this paper, an attempt is made to model how
listeners arrive at a metrical interpretation of a fragment of
music. A number of existing models are based on the Gestalt
principles of perception, ‘simplicity’ or ease of encoding
being a key aspect. An alternative to this approach are
models based on the notion of ‘likelihood’, so-called
memory-based models. We adapt and evaluate a number of
memory-based models for parsing metrical structure. More
specifically, we will use the models covered by the Data-
Oriented Parsing (DOP) framework. This framework defines a
large class of probabilistic grammars that take sub-trees from
an annotated corpus to form a general Probabilistic Tree
Grammar. The models are tested on the National Anthems
collection, yielding encouraging results.

1. INTRODUCTION

Even though the computational modeling of beat and meter
induction has been researched for some time now (Desain &
Honing, 1994), the human assignment of metrical
information still outperforms existing computational models
and systems. Humans are not only very precise in finding
structural metrical information, they can also do it quickly
and are very flexible, i.e. they can easily adapt to meter
changes. There is a considerable amount of literature on
modeling the phenomenon of meter induction, using a large
variety of computational paradigms (cf. Desain & Honing,
1999). One class of models is based on the Gestalt principles
of perception, ‘simplicity’ or ease of encoding being a key
aspect. An alternative approach, called memory-based, i s
based on the notion of ‘likelihood’. Here, models try to
explain structural interpretations in terms of the most
probable encoding. The probabilities are extracted from
previously seen examples. Instead of generating the metrical
structure using a simple model, previously encountered
structures drive the analysis of new data.

In this paper, we explore a number of memory-based
approaches to meter induction concentrating on models that
fit the Data-Oriented Parsing (DOP) framework (see Bod, Scha
& Sima’an, 2003 for an overview). The models are tested on
the National Anthem Collection (Desain & Honing, 1999).
We will show that (fragments of) previously seen examples
of metrical information can be used to assign structure to an
unseen piece of music (see Figure 1).
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Figure 1: A rhythmic example in common music notation
(a), and its representation on a time grid (with x for an onset,
dot for a rest, one grid-point is a 16th note), and with a
metrical tree above it (b).

The results obtained indicate that memory-based approaches
can be considered as a viable alternative to existing models
of meter induction.

The next section explains several memory-based approaches
to the structuring of data, concentrating on the family of
DOP-models. Section 3 contains a description of how these
models are applied and evaluated, together with the actual
results.

2. MEMORY-BASED APPROACH

The DOP-framework (Bod, 1998; Bod, Scha & Sima’an,
2003) defines a large class of probabilistic grammars by
taking sub-trees from an annotated corpus to form a general
Probabilistic Tree Grammar. Sub-trees are formed by ‘cutting’
the original tree structure on all possible internal nodes.
Cutting the trees from the training data results in many
different sub-trees, where each may possibly occur more than
once. The extracted sub-trees have open nodes (i.e. non-
terminals rather than terminals), that generalize over the
original tree structure by under-specifying parts of the
complete tree, effectively creating the generative power of
the approach.

By limiting the sub-trees in various ways, several specific
probabilistic grammars can be simulated (e.g., by limiting
the sub-trees to depth 1, a probabilistic context-free grammar
or PCFG is obtained). Thus the underlying idea of DOP is to
analyze new data using sub-trees from a corpus of previously
analyzed data.
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Figure 2: An example of how sub-trees can combine in a
fully specified metrical interpretation. Using attached
probabilities, the most probable tree structure can be chosen;
a and b show two different ways of arriving to the same tree.

A node-substitution operation is used to combine two or more
sub-trees into a new tree structure (see Figure 2). Node-
substitution identifies the leftmost non-terminal frontier
node of one sub-tree with the root node of a second sub-tree
(i.e., the second sub-tree is substituted on the leftmost non-
terminal frontier node of the first sub-tree). A sequence of
sub-trees that can be successfully combined is called a
derivation, while the structure resulting from a derivation i s
called a parse tree. The most probable parse tree for an input
is compositionally computed from the probabilities of the
sub-trees. The probability of a sub-tree t, P(t), is computed as
the number of occurrences of t, |t|, divided by the total number
of occurrences of treebank-sub-trees that have the same root
label as t. Let r(t) return the root label of t. Then we may
write:
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The probability of a derivation t1ο...οtn is computed by the
product of the probabilities of its sub-trees ti:

P(t1ο...οtn) = Π i P(ti)

There may be different derivations that generate the same
parse tree (see Figure 2a/b). The probability of a parse tree T
is the sum of the probabilities of its distinct derivations. Let
tid be the i-th sub-tree in the derivation d that produces tree T,
then the probability of T is given by

P(T) = ΣdΠi P(tid)

Thus the DOP method considers counts of sub-trees of a wide
range of sizes in computing the probability of a parse tree:
everything from counts of single-level rules to counts of
entire trees. This means that the method is sensitive to the
frequency of large sub-trees while taking into account the
smoothing effects of counts of small sub-trees.

Standard best first parsing algorithms can be applied to
computing the most probable parse tree for an input in DOP
(for details see Bod, Scha & Sima’an, 2003).

3. RESULTS

This section presents an evaluation of the memory-based
approaches to meter induction. First, the data sets are
described, followed by an explanation of the settings and the
evaluation approach taken. Finally, some quantitative results
are discussed.

3 . 1 . Data Sets

The memory-based models are tested on the National
Anthems Collection (Desain & Honing, 1999), or Anthems
for short: a metrically annotated corpus (see
http://www.hum.uva.nl/mmm under heading ‘Data
Archives’). This collection contains 105 songs (see Table 1).
The collection is pre-processed to obtain a labeled metrical
tree description of each Anthem (cf. Figure 1). Figure 3a
depicts the structure of an Anthem (i.e. an example of a 2/4
interpretation). The highest level delimits the piece (P), the
next highest level denotes bar information (B). The levels
below that contain duration information. Depending on the
meter, it contains half (H), quarter (Q), eighth (E), and
sixteenth (S) notes. All anthems are notated on a sixteenth
note time grid.
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Figure 3a: A rhythmic example of two bars making up a
song. The levels are labeled P(iece), B(ar), Q(uarter-note),
E(ighth-note) and S(ixteenth) note respectively. b: An
example of an input string (in time-grid representation) and
its alternative versions filled-out to make-up a pattern of n-
grid units long (here n=6) to allow for all possible upbeat
interpretations.

Using entire songs for testing and training raises two issues.
Firstly, since humans can assign metric information already
after analyzing a very limited amount of music (Desain &
Honing, 1999), it seems only fair to allow a model of human
musical perception access only to a fragment of a song, too.
Secondly, the memory-based models that are evaluated in this
article are computationally limited with regard to the length
of the test and training data. Large training trees result in too
many possible sub-trees (the number of sub-trees grows
exponentially with the size of the original tree). Similarly,
structuring relatively long sequences is currently outside the



practical boundaries in memory space and computational
power.

Bearing this in mind, we choose to select for this study the
first 48 grid-points (denoting 16th notes) of each song for
testing and training. Table 1 contains a list of the meters that
are found in the collection, together with their distribution.
In all of these meters, 48 sixteenth notes fit within full bars
perfectly. For example, with a 3/4 meter, a bar contains 12
sixteenth notes, so 48 grid-points delimit 4 bars.

Table 1: Distribution of meters in Anthems corpus (N=105)

Meter N Proport ion

4/4 77 0.73

2/4 11 0.11

3/4 10 0.10

2/2 6 0.06

6/4 1 0.01

The first 48 grid-points of a test song may start with a rest,
signifying an upbeat. Since the system should be able to
recognize upbeats, all grid-points with rests at the beginning
and end of these grid-points are removed. This yields a
shorter string of grid-points starting and ending in a note
onset. Next, the set of 48 grid-point songs containing all
possible upbeats of the reduced excerpt is generated by
sliding the excerpt over an 48 grid window. Rests are padded
to the left and right to fill up the missing parts. In other
words, rests are positioned in front of the excerpt and at the
end, filling an 48 grid song (see Figure 3b). Note that this i s
not the only method of generating possible upbeats.
However, the main advantage of this approach is that the
number of rests in the pieces stays the same. Since most
training songs have upbeats and the upbeats are a significant
piece of the songs, the system has a preference for songs
containing rests. By keeping the number of rests in all
possible songs the same, this unwanted preference i s
diminished (NB. In future research, we will investigate
alternative methods of upbeat generation). It must be stressed
that this is not a property of the approach per se, but a
combination of the selection and annotation of the training
data, and the small size of the excerpts.

3 . 2 . Evaluation

We divided the Anthem Collection into 10 different
training/test set splits, where 10% of the songs were used as
test data each time, and 90% as training data. The test data,
consisting of pieces with upbeats of different lengths, are
handed to the system. Based on the sub-trees extracted from
the training data, the test data songs are parsed and ranked by
the dopdis parser, implementing the DOP framework
(Sima’an, 1999). The pieces with the highest probabilities
are selected (in effect, selecting the most probable upbeat)
and are returned as output of the system. This is then
evaluated against the original or gold standard structure. This
comparison can be done in many different ways. In this paper
we test whether both the bar-length and upbeat-length are
identical. But note that the memory-based systems find

complete metrical tree structures (not just phase and duration
of a beat) describing the complete metrical structure. For
now, we concentrate on the beat-level only. Future work will
further investigate generated sub-bar information.

3 . 3 . Quantitative Results

The results of applying the dopdis parser (Sima’an, 1999) to
the Anthem Collection can be found in Table 2. The first
column denotes the maximum depth of the training set sub-
trees used. When depth 1 is used, the system is equivalent to
using a probabilistic context-free grammar (PCFG). The
second column, ‘Upbeat’ denotes the percentage of correctly
found upbeats. ‘1st Bar’ gives the percentage of correct bar-
length of the first bar. ‘2nd Bar’ gives the percentage of
correct bar-length of the second bar, while ‘Any Bar’ gives
the percentage of Anthems containing a correct bar-length.
The figures between brackets are the standard deviation rates.

Table 2: Results of dopdis parsing on Anthems corpus.

D e p t h Upbeat 1st Bar 2nd Bar Any Bar

1 36 (6.36) 5 (2.24) 1 (1.00) 6 (2.67)

2 49 (4.58) 9 (3.48) 22 (3.59) 37 (3.96)

3 57 (3.96) 1 (3.14) 39(4.82) 50 (2.98)

As can be concluded from the results (See Table 2), the dopdis
parser is not as successful as, for instance the family of rule-
based systems described in Desain & Honing (1999) in
finding correct upbeats; the latter finds up to 60% correct
beats, as the dopdis parser finds up to 50% correct.

A possible reason for this result is that any combination of
note onsets and rests can be parsed by the DOP framework.
The selection of the song with the correct upbeat depends
entirely on the statistics of previously structured data, and
therefore rule-based methods (as described in Desain &
Honing, 1999) are likely to do better. However, as one can
see, as the maximum sub-tree depth increases (See Table 2 ,
first column), more structural and statistical information i s
gathered, clearly leading to better results.

In future research, we hope to increase the performance of our
models by further enlarging structural context (such as
allowing larger sub-trees) and by using more sophisticated
probabilistic training algorithms (such as expectation-
maximization and maximum entropy; see Bod, Scha &
Sima’an, 2003). Furthermore, a more thorough investigation
into the assignment and generation of possible upbeats i s
asked for. The current method is rather ad hoc, but other
approaches will be considered.

4. CONCLUSION

In this article, we presented a memory-based approach to
meter induction. The family of systems that employ this
approach use knowledge extracted from previous experience
to analyze new and possibly unseen instances. We
concentrated on the Data-Oriented Parsing (DOP) family of
models. The DOP systems can be applied to metrically
annotated corpora of music, although some problems arise.



The main problem of the system turned out to be determining
of the upbeat (or phase) in a straightforward manner. The
approach taken here is to analyze a set of possible upbeats
and let the system select the most probable upbeat based on
the probability of the structure found. The results show that
when more structural and probabilistic information is used
(i.e. when a larger maximum tree depth is used), the results
increase significantly. A potential advantage of the DOP
approach is that it can in principle take into account changes
in meter, which the rule-based approaches mentioned do not
address. Experiments with irregular meter will, however, have
to await further experimentation. In future research we will,
next to the issues mentioned, apply these methods to larger
corpora such as the Essen Folksong Collection (Schaffrath,
1995).

5. ACKNOWLEDGMENTS

We would like to thank Khalil Sima’an for making his dopdis
parser (owned by the Netherlands Organization of Scientific
Research [NWO]) available and for his extensive help in
configuring it.

6. REFERENCES
1. Bod, R.(1998) Beyond Grammar. Stanford, CA: CSLI

Publications.

2. Bod, R., Scha, R. & Sima’an, K (eds.)(2003). Data-
Oriented Parsing, University of Chicago Press.

3. Desain, P., & Honing, H. (1994). Foot-Tapping: a
brief introduction to beat induction. In Proceedings o f
the 1994 International Computer Music Conference.
78-79. San Francisco: International Computer Music
Association.

4. Desain, P. & Honing, H. (1999) Computational
Models of Beat Induction: The Rule-Based Approach.
Journal of New Music Research 28(1):29-42.

5. Schaffrath, H. (1995) The Essen Folksong Collection
in the Humdrum Kern Format. D. Huron (ed.). Menlo
Park, CA: Center for Computer Assisted Research in
the Humanities.

6. Sima’an, K. (1999) Learning Efficient
Disambiguation. PhD thesis. University of
Amsterdam / University of Utrecht, The Netherlands.


