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Abstract

We present a probabilistic switching state space model
for timing deviations in expressive music performance.
We formulate tempo tracking and automatic transcrip-
tion (rhythm quantization) as filtering and maximum a
posteriori (MAP) state estimation tasks. The resulting
model is suitable for real-time tempo tracking and tran-
scription and hence useful in a number of music ap-
plications such as adaptive automatic accompaniment
and score typesetting.

1 Introduction

Simultaneous estimation of the scoreand the tempo
from onset times of an expressive performance is a math-
ematical “chicken-and-egg” problem. If the tempo is
known, quantization, i.e. the association of onset times
with discrete score locations is simpler. Similarly, if
the score is given, the tempo can be estimated more
easily.

However, if both tempo and the score are unknown,
the problem becomes computationally intractable; there
are simply too many alternative score-tempo pairs that
may have given rise to an observed onset sequence.
Due to this conceptual difficulty, most of research in
the past has focused on quantization and tempo track-
ing separately.

Several models have been proposed to solve the
rhythm quantization problem, e.g. (Longuet-Higgins
1987), (Desain and Honing 1991) (Cambouropoulos
2000), (Hamanaka et al. 2001). Researchers have also
demonstrated sophisticated implementations (Pressing
and Lawrence 1993), (Agon et al. 1994).

There is a significant body of research on the psy-
chological and computational modeling aspects of tempo
tracking. The work of (Large and Jones 1999), and its
extensions by (Toiviainen 1999) describe a nonlinear
adaptive oscillator model to human behavior in track-
ing the tempo. Attempts are also made to deal di-
rectly with the audio signal (Goto and Muraoka 1998),
(Scheirer 1998), (Dixon and Cambouropoulos 2000).

Another class of tempo tracking models are devel-
oped in the context of interactive performance systems
and score following. These models make use of prior

knowledge in the form of an annotated score (Dannen-
berg 1984),(Vercoe and Puckette 1985). More recently,
(Raphael 1999) has demonstrated an interactive real-
time system that follows a solo player and schedules
accompaniment events according to the players tempo
interpretation. The system is based on a probabilistic
model, hence can be trained to learn the soloists inter-
pretation.

Our approach to transcription and tempo tracking
is also from a probabilistic, i.e. Bayesian modeling
perspective. In (Cemgil et al. 2000), we introduced
a probabilistic approach to perceptually realistic quan-
tization. This work assumed that the tempo was known
or was estimated by an external procedure. For tempo
tracking, we introduced a Kalman filter model (Cemgil
et al. 2001). In this approach, we modeled the tempo as
a smoothly varying hidden state variable of a stochastic
dynamical system.

In the current paper, we integrate quantization and
tempo tracking. Basically, our model balances score
complexity versus smoothness in tempo deviations. The
correct tempo interpretation results in a simple quanti-
zation and the correct quantization results in a smooth
tempo fluctuation. Here, we give an outline of the main
ideas, the theory is described in more detail in (Cemgil
and Kappen 2002). A similar approach is proposed re-
cently by (Raphael 2001) using a different and some-
what less flexible inference technique.

2 Bayes Theorem

The joint probabilityp(X;Y ) of two random vari-
ablesY andX defined over the respective state spaces
SY andSX can be factorized in two ways:

p(X;Y ) = p(X jY )p(Y ) = p(Y jX)p(X) (1)

wherep(Y jX) denotes the conditional probability of
Y givenX : for each value ofX , this is a probabil-
ity distribution overY . The marginal distribution of
a variable can be found from the joint distribution by
summing over all states of the other variable, e.g.:

p(Y ) =
X

X2SX

p(Y;X) =
X

X2SX

p(Y jX)p(X) (2)



It is understood that summation is to be replaced by
integration if the state space is continuous. Bayes the-
orem results from Eq. 1 and Eq. 2 as:

p(X jY ) =
p(Y jX)p(X)P

X2SX
p(Y jX)p(X)

(3)

This rather simple looking “formula” has surpris-
ingly far reaching consequences and can be directly ap-
plied to rhythm transcription and tempo tracking. To be
more concrete, we introduce some mathematical nota-
tion. LetY = y1:K denote onset times observed in an
expressive performance. We use the abbreviationy1:K

to denote the sequencey1; y2 : : : yK , i.e. there areK
onsets. LetX = fc1:K ; z1:Kg whereck denotes the
score position andzk denotes the tempo at thek’th on-
set. Then Eq. 3 can be written as

p(c1:K ; z1:K jy1:K) =
p(y1:K jc1:K ; z1:K)p(c1:K ; z1:K)

p(y1:K)

The quantities in the numerator are calledlikeli-
hood andprior respectively. Roughly, the prior distri-
bution specifies our knowledge about the score simplic-
ity and tempo smoothness. The likelihood term defines
a model for short scale expressive timing deviations. In
the following section we will define these models.

3 Model

We will consider the following generative model
for a sequence of onset times obtain from an expres-
sive music performance

ck = ck�1 + 
k�1 (4)

!k = !k�1 + �k (5)

�k = �k�1 + 2!k(ck � ck�1) (6)

yk = �k + �k (7)

In Eq. 4, ck denotes the discrete grid location of
k’th onset in a score. The interval between two con-
secutive note onsets is denoted by
k�1. For example
consider the conventional music notation� � � which
encodes
1:3 = [1 0:5 0:5]. The corresponding note
onset sequence isc1:4 = [0 1 1:5 2]. We assign a
prior of form p(ck) / exp(��d(ck)) whered(ck) is
the number of significant digits in the binary expansion
of the fraction ofck (Cemgil et al. 2000) and� is a pos-
itive parameter. One can check that such a prior prefers
simpler notations, e.g.p( �� �

6
�� �

6
� ) < p( � � � ).

Eq. 5 defines a distribution over possible tempo tra-
jectories. We represent the tempo by the logarithm
of its inverse (log-period) that we denote by! as in
(Cemgil et al. 2001). For example a tempo of120 beats
per minute (bpm) corresponds to! = log 60=120 sec=
�1. The tempo appears as a positive scale variable
hence a representation in the logarithmic scale is quite
natural. More precisely, we take the unknown tempo

change�k to be a Gaussian withN (0; 
kQ)1. Depend-
ing upon the interval between consecutive onsets, we
scale the variance; longer jumps in the score allow for
more tempo fluctuation.

Given the log-period sequence!, Eq. 6 defines a
model for “idealized” onset times that are only sub-
ject to tempo fluctuations. We can interpret�k as the
ideal timing of an onset without any expressive timing
or motor error. To simplify our notation, we will some-
times denote the pair(�k; !k) by zk.

Eq. 7 defines the observation model. Hereyk is
the actual observed onset time of thek’th onset in the
performance. The noise term�k models small scale ex-
pressive deviations in timing of individual notes. In this
paper we will assume that�k has a Gaussian distribu-
tion parameterized byN (0; R). A perceptually more
plausible model for quantization is described in (Cemgil
et al. 2000). The graphical model is shown in Figure 1.
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Figure 1: Graphical Model. The pair of continuous
hidden variables(�k; !k) is denoted byzk. Bothc and
z are hidden; only the onsetsy are observed.

We define tempo tracking as a filtering problem

z�k = argmax
zk

X
ck

p(ck; zkjy1:k) (8)

and rhythm transcription as a MAP state estimation
problem

c�1:K = argmax
c1:K

p(c1:K jy1:K) (9)

p(c1:K jy1:K) =

Z
dz1:Kp(c1:K ; z1:K jy1:K)(10)

The quantities in Eq. 8 and Eq. 9 are intractable due
to the explosion in the number of mixture components
required to represent the exact posterior at each step
k (See Figure 3). Consequently, we will reside to a
numerical approximation technique called particle fil-
tering.

1We denote a (scalar or multivariate) Gaussian distribu-
tion p(x) with mean vector� and covariance matrixP by

N (�; P )=̂j2�P j�
1

2 exp(� 1
2
(x� �)TP�1(x� �)).
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Figure 2:Example demonstrating the explosion of the num-
ber of components to represent the exact posterior. Ellipses
denote the conditional marginalsp(!k; �kjc1:k; y1:k). For
clarity, we assume that a score consists only of notes of length

(� and � , i.e.
k can be either1=2 or1. (Above) We start with
a unimodal posteriorp(!1; �1jc1; y1), e.g. a Gaussian cen-
tered at(�; !) = (0; 0). Since we assume that a score can
only consist of eight- and quarter notes, the predictive distri-
butionp(!2; �2jc1:2; y1) is bimodal where the modes are cen-
tered at(0:5; 0) and(1; 0) respectively (shown with a dashed
contour line). Once the next observationy2 is observed
(shown with a dashed vertical line around� = 0:5), the pre-
dictive distribution is updated to yieldp(!2; �2jc1:2; y1:2).
The numbers denote the respective log-posterior weight of
each mixture component. (Middle) The number number of
components to represent the exact posterior grows exponen-
tially with k. (Bottom) Basic idea of particle. At each step
k, particles with low likelihood are discarded. Surviving par-
ticles are linked to their parents. The method can be inter-
preted as a (stochastic) breadth first tree search procedure in
the score-tempo space.

4 Particle Filtering

Particle filtering (a.k.a. Sequential Monte Carlo sam-
pling) is an integration method especially powerful for
inference in dynamical systems. Recently, it has been
applied very successfully in a broad spectrum of appli-
cations in applied science, ranging from analysis of fi-
nancial data to aircraft tracking and real time robotics.
See (Doucet, de Freitas, and Gordon 2001) for a de-
tailed review of state of the art.

A particle refers to a configuration of unobserved
variables. In our model, each particle corresponds to a
score and tempo level hypothesis that may have gener-
ated the data. More precisely, each particle is a marginal
posterior distribution�(i)

k
= p(zkjc

(i)
1:k), i.e. a score

and corresponding mean and variance estimate of cur-
rent tempo. The basic idea in particle filtering is to
construct the particles at stepk from particles at step
k � 1. The outline of the algorithm is as follows

1. Generation
for each particle�(i)

k�1 i = 1; 2; : : : ; N

FindL candidate quantization locations for
the observed onsetyk. Denote each candidate by
ĉ
(lji)
k

wherel = 1 : : : L.

2. Evaluation
for each candidatêc(lji)

k
Evaluate the likelihood

w(lji) = p(ykj�
(i)
k�1). This is equivalent to one

step Kalman filtering.

3. Selection
SelectN candidates from all candidatesĉ(lji)

k
gen-

erated according to their likelihoodw (lji). Up-
date the tempo and score of surviving particles.

5 Simulation Results

We demonstrate tempo tracking and quantization
performance of the model on two different examples.
The first example is a repeating “son-clave” pattern

7 > � � > �� �� � 7 (c = [1 2 4 5:5 7 : : : ]) with
fluctuating tempo2. Such syncopated rhythms are usu-
ally hard to transcribe and make it difficult to track the
tempo even for experienced human listeners. More-
over, since onsets are absent at prominent beat loca-
tions, standard beat tracking algorithms usually loose
track.

We observe that for various realistic tempo fluctu-
ations and observation noise level, the particle filter is
able to identify the correct tempo trajectory and the cor-
responding quantization (Figure 3, above).

The second example is a piano arrangement of the
Beatles song (Yesterday) performed by a professional
classical pianist on a MIDI grand piano. Since the orig-
inal arrangement is known, we estimate the true tempo

2We modulate the tempo deterministically according to!k =
0:3 sin(2�ck=32). The observation noise variance isR = 0:0005.
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Figure 3: Above: Tempo tracking results for the clave
pattern with 4 particles. Each circle denotes the mean
(�

(i)
k

; !
(i)
k
). The diameter of each particle is proportional to

the normalized importance weight at each generation. ’*’
denote the true(�; !) pairs. Below: Tracking results for
“Yesterday”. ’*’ denote the mean of the filteredz1:K after
clamping to truec1:K . Small circles denote the meanz1:K
corresponding to the estimated MAP trajectoryc�1:K using
10 particles.

trajectory by Kalman filtering after clampingc1:K . As
shown in Figure 3, the particle filter estimate and the
true tempo trajectory are almost identical.

6 Discussion and Conclusion

There are several advantages offered by particle fil-
tering approach. The algorithm is suitable for real time
implementation. Since the implementation is easy, this
provides an important flexibility in the models one can
employ. Although we have not addressed issues such
as learning and online adaptation in this paper, param-
eters of the model can also treated as hidden variables.

Especially in real time music applications fine tun-
ing and careful allocation of computational resources
is of primary importance. Particle filtering is suitable
since one can simply reduce the number of particles
when computational resources become overloaded.

Motivated by the advantages of the particle filtering
approach, we have implemented a prototype of our sys-
tem that operates in real time. Consequently, the music
is quantized such that it can be typeset in a notation
program. We will eventually provide a short demon-
stration during the conference.
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