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Introduction

Musical time can be considered to be the product of
two time scales: the discrete time intervals of a
metrical structure and the continuous time scales
of tempo changes and expressive timing (Clarke
1987a). In musical notation both kinds are present,
although the notation of continuous time is less de-
veloped than that of metric time {often just a word
like “rubato” or “accelerando” is notated in the
score). In the experimental literature, different ways
in which a musician can add continuous timing
changes to the metrical score have been identified,
There are systematic changes in certain thythmic
forms: for example, shortening triplets {Vos and
Handel 1987| and timing differences occurring in
voice leading with ensemble playing (Rasch 1979).
Deliberate departures from metricality, such as
rubato, seem to be used to emphasize musical struc-
ture, as exemplified in the phrase-final lengthening
principle formalized by Todd {1985}, In addition to
these effects, which are collectively called expres-
sive timing, there are nonvoluntary effects, such as
random timing errors caused by the limits in the
accuracy of the motor system (Shaffer 1981) and
errors in mental time-keeping processes [Vorberg
and Hambuch 1978). These effects are generally
rather small—in the arder of 10-100 msec. To
make sense of most musical styles, it is nzcessary
to separate the discrete and continuous compo-
nents of musical time. We will call this process of
separation quantization, although the term is gen-
erally used to reflect only the extraction of a metri-
cal score from a musical performance.
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Perception of Musical Time

Human subjects, even without much musical train-
ing, can extract, memorize, and reproduce the dis-
crete metrical structure from a performance of a
simple piece of music—even when a large continu-
ous timing component is involved. This is surpris-
ing, given that the note durations in performance
can deviate by up to 50 percent from their metrical
values (Povel 1977). Indeed, it secems that the per-
ception of time intervals on a discrete scale is an
obligatory, automatic proccss (Sternberg, Knoll, and
Zukofsky 1982; Clarke 1987b). This so-called cate-
gorical perception can also be found in speech per-
ception and vision. By contrast, the perception and
reproduction of continuous time in musical perfor-
mance seems to be associated with expert behavior.

Once the discrete and continuous aspects of tim-
ing have been separated by a quantization process,
each can function as an input to other processes.
The induction of an internal clock {Povel and Es-
sens 1985) and the reconstruction of the hierarchi-
cal structure of rhythmical patterns (Mont-Reynaud
and Goldstein 1985} both rely on the presence of a
metrical score, while Todd {1985} has developed a
model in which hierarchical structure is recovered
from expressive timing alone.

Applications of Quantization

Apart from its importance for cognitive modeling,
a good theory of quantization has technical applica-
ticns. It is one of the bottlenecks in the automatic
transcription of performed music, and is also im-
portant for compositions with a real-time, interac-



tive component where the computer improvises or
interacts with a live performer. Last but not least, a
quantization tool would make it possible to study
the expressive timing of music for which no score
exists, as in improvised music.

Known Methods

Few computational models are available in the
literature for separating a metrical score from ex-
pressive timing in performed music (Desain and
Honing 1988). Available methods produce a consid-
erable number of errors when quantizing the data,
The traditional approach is to expand and contract
note durations according to a metrical grid that is
more or less fixed—the grid being adjustable to in-
corporate different, low-level subdivisions (e.g., for
triplets). Commercial MIDI software uses this
method, which often gives rise to a musically ab-
surd output, as shown in Fig. 1. Better results are
obtained when the system tracks the tempo varia-
tions of the performer (Dannenberg and Mont-
Reynaud 1978), though the system still returns an
error rate of 30 percent. More sophisticated artifi-
cial intelligence [AI) methods use knowledge about
meter [Longuet-Higgins 1987) and other aspects of
musical structure. A particularly elaborate system
originated at the CCRMA center at Stanford Uni-
versity in the automatic transcription project
{Chowning et al. 1984). This knowledge-based
method uses information abour different kinds of
accent, local context, and other musical clues to
guide the search for an optimal quantized descrip-
tion of the dara. It is entirely implemented in a
symbolic, rule-based paradigm. This approach can
be seen as the antithesis of our approach, in which
all knowledge in the system is represented im-
plicitly. We took the connectionist approach be-
cause knowledge-based approaches seemed to offer
no real solution to manifest inadequacies of the
simplistic metrical grid method. As with the major-
ity of traditional Al programs, the sophisticated
knowledge these Al methods use is extremely do-
main dependent {depending on a specific musical
style), causing the systems to break down rapidly
when applied to data foreign to this style.

Fig. 1. Example of a per-
formed score and its quan-
tization by a commerical
MID! Package using a
resolution of 1/64 note.
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Connectionist Methods

Connectionism provides the possibility for new
kinds of models with characteristics traditional Al
models lack, in particular robustness and flexibility
{Rumelhart and McClelland 1986). Connectionist
models consist of a large number of simple ele-
ments, each of which has its own activation level.
These cells are inconnected in a complex network,
with the connections serving to excite or inhibit
other elements, One broad class of these networks,
known as interactive activation and constraint
satisfaction networks, generally converge towards
an equilibrium state given some initial state.

An example of the application of these networks
to music perception is given by Bharmcha (1987) in
the context of tonal harmony. These networks have
not yet been used for quantization. The quantiza-
tion model presented in this paper is a connectionist
network designed to converge from nonmetrical
performance data to a metrical equilibrium state.
This convergence is hard wired into the system,
and no learning takes place. The model is thought
of as a collection of relatively abstract elements,
each of which performs a rather complex function
compared to standard connectionist models. While
it may be possible to express these functions in
terms of one of the formalisms for neural networks,
this lies beyond the scope of the present article,

Basic Model

Consider a network with two kinds of cells: the
basic cell, with an initial state equal to an inter-
onset interval, and the interaction cell, which is
connected in a bidirectional manner to two basic
cells. Figure 2a shows the topology of a network for
quantizing a rhythm of four beats, having its three
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Fig. 2. Topology of a basic ~ Fig. 3, Interactive time in-  Fig, 4. Interaction function
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twao basic cells to which it is connected toward in-
teger multiples of one another, but only if they are
already near this state. It applies the interaction
Fig. 3 function to the quotient of their states {ratios smaller
(a) than 1 are inverced). If this ratic were close to an
m integer (e.g., 1.9 or 2.1), the interaction function
would return a change of ratio that would steer the
two states toward a perfect integer relation (e.g., 2).
U Figure 3 illustrates the interactions that arc rele-
vant in quantizing the four-beat rhythm. One can
see that if the ratio is slightly above an integer, it

will be adjusted downward, and vice versa as in
Fig. 4.

b
{b) There are constraints to be taken into account for
interaction functions, First, the function and its de-
- rivative should be zero in the middle region be-

tween two integer ratios. In this region it is not

clear if the integer ratio above or below is the proper
J goal, so no attempt is made to change the ratio,

Second, the derivative around integer ratios should
be negative to steer the ratio towards the integer,
but greater than —1 to prevent overshoot that would
result in oscillations. Third, the magnitude of the
function should decrease with increasing ratios to
diminish the influcnce of larger ratios. A large class
k of functions meet these constraints. At present we
4——» Interaction use a polynomial section around each integer ratio.

s [ntcr-onsect interval
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The degree of the polynomial, called the peak pa-
rameter, is typically between 2 and 12, To realize
the decreasing magnitude of the interaction func-
tion, each section is scaled with a multiplication
factor that is a negative power of the integer ratio.
This power is called the decay parameter, and is
typically between =1 and —3. This interaction
function is defined as

Fir| = {round(r] — z) *
[2(r — entier{r] — 0.5)]" *

round|r )9,

in which the first term gives the ideal change of
ratio, the second term signifies the speed of change
which is at maximum near an integer ratio [with
peak parameter p), and the third term scales the
change to be lower at higher ratios (with decay pa-
rameter d). It is simple to prove that this interac-
tion function satisfies the constraints mentioned.

From the change of ratio Fla/b), new intervals
a+ Aand b — A are calculated without altering the
sum of both intervals.

12_1”(3)
b-A b b

a

bF(E)
a 4a
‘+F+F(3)

In simulating the network, each interaction cell up-
dates the states of the two basic cells to which it is
connected. This process is repeated, moving the
basic cells slowly towards equilibrium. Equilibrium
is assumed when no cell changes more than a cer-
tain amount between two iterations. For example,
let us take a rhythm with inter-onset intervals of 2,
1.1, and 2.9 esec. As the representation of duration
is currently unimportant in the model, they are
treated as relative values {tempo has no influence
on the quantization). This rhythm is represented in
a basic network as three cells with the initial states
2.0:1.1:2.9, Iterating the procedure outlined above

which implies

N

function of iteration count
for thethythm 1, 2. 3 in a
basic network (b).

Fig. 5. State as a function
of iteration count for the
rhythm 2, 1, 3 in a basic
network o). State as a
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for the interactions between cells labeled A and B,
and cells B and C will adjust the durations toward
2.:1:3, where the nec reaches an equilibrium. Fig-
ure 5a is a graph of the state of each hasic cell as a
function of the iteration count.

This type of network can of course only quantize
very simple rhythms, Consider for instance the

- thythm 1.1:2.0:2.9, which should converge to

1:2:3. The cell representing 2.9 only interacts with
its neighbor 2.0, the resultant ratio 1:45 being a
long way from an integer. The basic net adjusts
these values to 1.2:2.4:2.4, as seen in Fig. 5b.

What the model fails to take account of is the
time interval 3.1, the sum of the frst two dura-
tions, If this interval were incorporated into the
model, it would interact successfully with the third
interval [2.9) in such a way that the pair of intervals
would gravitate toward the ratio 1. This observa-
tion leads to a revised model.
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Compound Model

basic cells to which they are connected. The inter-
action of a sum cg]] with jts basic cellg is bidirec-
tional; if the sum cell changes ies value, the basic
cells connected to j¢ will all change Praportionally,

is once again to try to steer the
may be sum cells, ora
mixture of sum cells and basic cells—tgward an in-
teger ratin as was shown in Figs. 2b and 3p,

Our earlier Cxample—a durarion Sequence of 1.1,
2.0, 2.9—is now quantized correetly due to com.

data shown in Fig. 6. In this rthythm the fing| Six-
teenth note is Played longer ¢han the middle note
of the tripler, Nonetheless the local contexr of the
tWo intervals steers each hote towards its correet
value as seen in Fig. 6. The compound mode] pro-
duces promising results, even though the network
is rather sparse, allowing only adjacent time inter-
vals to interact. A compound network for 4 thythm
of n intervalg consists of n basic cells, [(n + 1)

(n - 2)/2] sum cells, and [a[n2 - 1]/6) interac-
tion cells,

Understanding the Model

In connectionist Systems the global behavigr
£merges from a large numper of local interagtions,
This makes jt very difficult to study the behavigr
of the network a¢ level, While jt may
initially seem attractive to yge descriptions |ike
“winning cells,” “pulling harder,” etc., a better
understanding of the patterns of change within the

Proach that hag proved very usefy] jg what we ¢al]
the clamping method This entails the clamping, or
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Fig, 6. State gs g funcetion
of iteration count for a
complex rhythm i 4 com-
pound network,

il

3
11.77 592 2,88 3.37 4.363.373.87 6.00 6.34 296260 296346 11.9

this measure (the amount of change), the function
is negated and integrated to Bive a curve with local
minima at stable points. The state of the experi.

tal energy. These minima and maximg €an now be
evaluated and judged in light of the context ser up
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Fig. 7. Clamping curve for  cell with a Ieft context of
a cell with a left context of 2, 1 {b). Clamping eurve
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ing curve for a cell with
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by the surrounding clamped cells. We call the inter-
val between two neighboring local maxima the
catch range. A value occurring within this range
will move towards the minimum between these
two maxima, provided the context does not change.
The size of the interval where the potential energy

stays close to a minimum is called its flatness value..

It is a measure of the lack of clarity in the context;
simple and clear contexts give rise to sharp minima.

Figure 7a shows the potential energy curve of two
cells in a basic network; the first has a state of 1;
while the other varies between 0-5. The figure
shows prominent local minima at 1, 2, 3, 4 and so
on, and at the inverse ratios (.5, .33, and so on).
These will be the equilibrium states of the second
cell. Note the flatter minima at larger ratios.

A graph of the basic interaction {without sum
cells) in a 3 cell net with the first two cells clamped
to the values 2 and 1 would yield the same curve,

N

Inter-onsct interval

since the first cell does not interact with the vary-
ing third cell. Introducing sum cells, however, gives
a different curve as can be seen in Fig. 7b. A mini-
mum is shown at 3 caused by the interaction of the
sum of the first and second basic cells with the last
cell (3:3 yielding a ratio of 1). The minimum at 3
being strengthened by the interaction of the first
cell with the sum of the second two (2: 4, yieldinga
ratio of 2). This interaction also results in a weaker
minimum at 1.5 (3: 1.5, a ratio of 2. With a left
context of 2:1:1 the minimum at 3 almost disap-
pears as in Fig. 7c. There is now a strong minimum
at 2 because the sum cell—which combines the du-
rations of the second and third cell—is also 2. The
sum of the first three cells give rise to the mini-
mum at 4. This clamping method thus gives a clear
picture of the mechanisms invelved in the complex
interactions through a simplification of the process
that assumes fixed values in most of the cells. The
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same method can also be used to study the infly-
ence of the parameters of the interaction function,
In Fig. 7d, which uses the same context as in Fig,
7¢, the peak and decay parameters have been
changed, showing the effect on the catch range.

If we now return to the more elaborate example
shown in Fig. 6, we can study the hehavior of the
net using the clamping method. Fig. 8a shows the
potential energy curves resulting from applying the
clamping method to the middle note of the trip-
let and the final sixteenth note. It shows clearly
that the different contexts in which they appear re-
sult in different curves and that both will be di-
rected towards the appropriate values. Note the
wide catch ranges that allow rather large deviations
to be quantized correctly and the smoothness of the
curves. This smoothness (the lack of small local
minima in the curve) is a result of the large number
of interactions (364 and 91 for the triplet and six-
teenth notes, respectively), which combine addi-
tively to yield each point on the curve. When the
clamping experiment is rerun with performance
data as context, more complex curves result, with a
smaller catch range and a greater flatness, which is
shown in Fig. 8b. Nonetheless, the durations still
converge towards the correct metrical values.

The position of local maxima in the energy curves
constitute the boundaries between the categories
into which the data will be quantized. As a resul t,
precise predictions can now be made about the per-
ceptual interpretation of rhythmical sequences
with a range of experimentally adjusted durations.
It is our intention to compare these predictions
with the results of empirical studies.

Implementation

In simulating a connectionist network, the calcu-
lated change in the state of one cell can be eHectu-
ated immediately |asynchronous update J, or can be
delayed, effectuating the change of all interactions
at cnce (synchronous update). For asynchronous
updates, a random order of visiting cells is gener-
ally preferred, In Table 1, a simplified implementa-
tion of the quantization model is given in Common
Lisp (Steele 1984), based on synchronous updates.
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curves of two notes in the
context of a performed
complex rhythm (b).

Fig. 8. Clamping curves of
two notes in the context of
an idealized complex
rhythm (a). Glamping
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The basic cells are represented as a vector of inter-
onset intervals. The sum cells are not represented
explicitly, but are recalculated, summing the repre-
sented interval of basic cells for each interaction, A
macro is provided that implements the iteration
over adjacent sum intervals. The described inter-
action function is the one we used for the Figs. 5
and 6. This simplified version requires the min;-
mum inter-onset interval to be around 1. More
elaborate versions run in Common Lisp and in C on
stack hardware (Macintosh IT and Atari ST serics
machines).

Further Research
The model we have presented needs high peak val-
ues to stabilize accurately. Because this results in

smaller catch ranges, we are currently studying the
automatic increasing of the peak parameter while
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Table 1. Micro version of the connectionist quantizer in CommonLISP

;:: MICRO CONNECTIONIST QUANTIZER
;7:; 1988 P.Desain and H.Honing

:i: Otilities

(defnacro for ({var &key (from 0) to) &body body)
nIterate body with var bound to successive valuesw
(let ((to-var (gensym)))

'(let ({,var ,from)(,to-var ,to)}
(loop ,(when to '(when (> ,var ,to-var) (return)))
,obody
{(inef ,var)))))

(defmacro max-index (vector)
nReturn index of last element in a vectorm
"(- (array-dinension ,vector 0) 1))}

(defmacro zero-vector! (vector)
wSet elements of a vector to zerow
' ({for (index :from 0 :to (max-index ,vector))
(setf (aref ,vector index) 0.0)))

(defmacro incf-vector-scalar! (a h from to)
nIncrement elements in a range of a vectorw
'(for (index :from ,from :to ,to)

(incf (aref ,a index) ,Db)))

(defmacro incf-relative-vector-vector! (a b)
wincrement elements of a vector proportionallynm
'"(for (index :from O :to (max-index ,a))
{incf (aref ,a index) (* (aref ,a index) (aref ,b index)))))

(defun print-vector (times vector &optional ({stream t}))
nPrint all elements of vectorwm
(format stream n~%~3d: n times)
(for (index :from 0O :to (max-index vector))
(format stream uw-2,1,5% n (float (aref vector index)))))

:;: control structure for iteration over intervals

(defmacro with-all-intervals (vector (begin end sum) (start
finish) &body body)
wIterating over all intervals contained in [start,finishlw
'{let (,sun)
{for (,begin :from ,start :to ,finish)
(setf ,sum 0.0)
(for (,end :from ,begin :to ,finish)
(incf ,sum (aref ,vector ,emd))
(@body})})

fcont'd)
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{defmacro with-intervals (vector (begin end sum) (start
finish) &body body)
wIterating over intervalswm
'(let ((,sum 0.0)(,begin ,start))
(for (,end :from ,start :to +Eilnish)
(incf ,sum (aref ,vector ,end))
(@boidy)))

(defmacro with-adjacent-intervals
{vector (a-begin a-end b-begin b-end a-sun
b-sum) &body body)
nlterating over interval pairsm
'(let ((max-index (max-index vector)))
(with-all-intervals ,vector (,a-begin ,a-end
ra=-sum) (0 (1- max-index))
(with-intervals ,vector (,b-begin yb-end ,b-sum)
({(l+ ,a-end) nax-index)
,2body)}))

#i7 Main gquantization procedures

(defun quantize! {durations koptional (peak Y4){decay ~1))
nQuantize data in durations vectorn
(let ((changes (make-array (length durations) :initial-
element 0.0)))
(for (times :from 0)
(print-vector tinmes durations)
(update! durations changes peak decay))))

(defun update! (durations changes peak decay)
wUpdate all durations synchronouslyn
(zero-vector! chamnges)
(vith-adjaceat-intervals durations

(a-begin a-end b-begin b~end a-sun b-sum)
(let ((delta (if (> a-sum b-sum)

(delta (/ a-sum b-sum) peak decay)

(- (delta (/ b-sum a-sun) peak decay)))))
(incf-vector-scalar! changes (/ delta a~-sum) a-begin
a-end)

(incf-vector-scalar! changes (- (/ delta b-sunm) b~-begin
b-end)))
(incf-relative-vector-vector! durations changes))

(defun delta (ratio peak decay)
nReturn change of time intervaln
(let ((delta-ratlo (interaction ratio peak decay)))

(/ delta-ratio (+ 1 ratio delta-ratio)))) ,
fcont'd)
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nBReturn change of ration

(goal (round ratio)))
(* (- goal ratio)

(expt goal decay))))

usage exanples

;
; (quantize!
: (quantizel!

(defun interaction (ratio peak decay)

(let ((position (1- (* 2 (- ratlo (floor ratio)))))}

(abs (expt position peak})

; minimon element in data should be larger than b

(vector 1.1 2.0 2.9))
(vector 11.77 5.92 2.88 3.37 4.3k 3.37 3.87
b.00 B.34 2.96 2.80 2.9bk 3.46 11.93))

For an updated version of this code, see the following addendum.

the network comes to rest. The dependency of the
model on absolute time and absolute tempi is still
an open question. The most difficult rhythmic
cases for this model are: (1) those that involve ad-
ditive durations that emerge when rests and tied
notes occur in the data and (2} divisive rhythms,
such as when a quintuplet is adjacent to a triplet.
Our aim is to be able to characterize exactly the
limits of the model and to evaluate the computa-
tional requirements and the psychological plau-
sibility of the results. A further aim is to develop a
robust technical tool for real-time quantization
using a process model. Tempo tracking is then an
absolute necessity.

Conclusion

We consider the compound model presented here to

be promising, In difficult cases the system under-
goes a graceful degradation instead of a sudden
breakdown: that is, the range in which rhythms are
caught and quantized correctly becomes more and
more limited. However, it is a paradoxical problem
with connectionist models that their adaptability
means that even a rough first implementation, with
obvious bugs, may exhibit appropriate behavior. In
order to increase an understanding of the process
involved, it is necessary to develop specialized tools
for diagnosis and investigation. The clamping

.

method described here seems to have considerable
potential, and we are confident that further tools of
a similar sort will develop as connectionist model-
ing gathers momentum.
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Addendum
Peter Desain, Henkjan Honing, and Klaus de Rijk

The design of special tools and methods to study
the time-quantization network is of great impor-
tance, allowing us to explain and predict behavior
for particular data, to examine the influence of

the parameters on network performance, ete. The
clamping method described earlier is one of these
tools. A second method visualizes the state space of -
the system by only taking rhythms of three inter-
onset intervals into account, The three degrees of
freedom are mapped to two dimensions by normal-
izing the total length of the rhythm, Each point

{x, y) represents a rhythm of three inter-onset in-
tervals ¥ v 1 —x— y in a net of interacting cells.
Drawing the rhythm after each interation yields a
trajectory toward a stable point in this space: the
quantized version of the three intervals.

Plotting the trajectories of different rhythms ex-
hibits the behavior of the network and the stable
attractor points in this two dimensional space.
They are positioned on straight lines that represent
rhythms with an integer ratio of two durations or
their sums (x=y; x+ y =z, where z is the third in-
terval length; 2x =y, etc.). Fig, 9 shows this state
space diagram for three intervals adding up to 3/4s
with a variety of trajectories traced on it. One can
see relatively large areas of attraction around the
simple rhythms and relatively small areas around
more complex rhythms. These so-called basins of
attraction depend on the parameters of the interac-
tion function; when the peak parameter is set to a
higher value (see Fig. 9b), more basins of attraction
around complex rhythms appear.

Diagrams such as Fig. 9 can form the basis for ex-
periments to test the validity of the connectionist
quantizing method as a cognitive model for thythm
perception. For example, we can plot the analogous
diagram for human listeners performing a categori-
cal perception experiment on part of the rhythm
space and compare it with the output of the quan-
tizer method. The results can be used to adjust the
interval-interaction function of the model to more
closely match human performance.

A third method amounts to a systematic explora-

.

Fig. 9. Trajectories in state
space of a thythm of three
notes adding up to 3/4.
The peak parameter is set
to 2 for the upper plot and
6 for the lower.

oy
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tion of the space of all possible parameter settings.
A mapping can be made from this space to the
number of correct quantizations of a set of perfor-
mances, Fig. 10 shows this mapping for a set of
about 50 relatively simple thythms, varying in
length from 3 to 14 inter-onset intervals, performed
by a musical expert. In this way, we defined implic-
itly what a “correct” quantization is. The vertical
axis shows the percentage of correct quantizations
of the system, and the other axes show the parame-
ters’ peak and decay. This visualization brings out
specific characteristics of the model. First, it shows
the model’s sensitivity to its parameters. Often
connectionist models behave badly in this respect,
needing specific parameter settings for different
problems. But Fig. 10 shows the system behaves
quite well with respect to parameter sensitivity,
The surface between a peak value of 4 and 6 and a
decay value between 0 and —2 is almost flat. Sec-
ond, it shows that the two parameters are more or
less independent. A decay value between 0 and —1
is most successful, fairly independent of the peak
parameter.

Furthermore, families of rhythms with particular
characteristics [e.g., thythms that change meter,
syncopated rhythms, rhythms with swing, sloppy

- performances of rhythms) could be made and tested,
yielding insights into the limitations of the model
for these specific types of thythms and the musical
and cognitive interpretations of the parameters, We
will explore these issues in future research.

8till, the hest understanding of such a complex
system arises from a mathematical description
through which one can search for analytical solu-
tions, prove convergence and stability properties,
ete. The present state of pragress on a mathemati-
cal description is given below, but much remains to
be done.

Mathematical Model

Suppose a thythm is given by a vector x of dura-
tions x, with 1 = i = N. At cach update, a new du-
ration vector is computed by

x* = x + Dix]
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Fig, 10. Mapping of the
parameter space to the
number of correct quanti-
zations of a set of 50
rhythms.

% correct
quantization

where D in this case is a kind of update function.
With a certain initial vector x, we can compute a
set of vectors, x*, x** __ hopefully approaching
equilibrium—the quantized thythm. To character-
ize D, we begin by decomposing it into an update of
individual basic cells

x* = x; + Dix).

An interaction cell connected to cells with values o
and b should perform an increment of their ratio
given by the interaction function

a¥t  a fa
Fopt f(s)'
We convert this change of ratio to a change of time

interval Ala,b) under the constraint that the sum of
the intervals stays the same:

a*+b*=a+ b
a* = a + Ala,b)
b* = b — Ala,b).

This results in the definition of the change effectu-
ated by an interaction cell:

Alab) = b—m "
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In a basic net, each basic cell (except the left- and
rightmost cell) is connected to two interaceion cells
[sec Fig. 2J. Their change is computed by summing
the change from cach interaction:

Dilx] = Alxy, Xi) — Alxey, )

This describes the complete behavior of the basic
network. In the compound network, the value of
the sum cells is defined as

q
Spq = E X

=p

l=p=g=N.

Suppose a sum cell S, is changed by an update
function D, , as follows:

S*pa = Spa D, 4{x).

A sum cell S, is interacting with a number of sum
cells on the right (S, . ;.) and a number of sum cells
on the left (8., , 1), yielding the following defini-
tion of D,

N p-1
Dr.q‘x] = E . A[Sp,qr S:H—I,.‘} - Eji A{Sz,p"ll Sn,-r]-
=g+ =

Here, if =N, the first term vanishes because there
are no right neighbors. Likewise, if p=1, the second
term vanishes. The change of the sum cells is propa-
gated proportionally to all the basic cells connected
to it, In each basic cell the change from all con-
nected sum cells is summed.

i
+ ki x'_
Dyx) = 2, Dylx) <=
( 5
Fe1 4-i (]

Summarizing the above and taking care of leftmost
and rightmost intervals, gives

S T
71 r
gl 2 o a(z . 3 ) i
p= q= r=q+l fap i=qvl 2

.

i
=F

This describes the behavior of the compound
model.

Until now we have assumed a > b in the defini-
tion of Ala, b]. We can make a modification to
eliminate the need for this assumption, as follows:

Flgla,b))
1 + gla,bl + FiGla,b))

where hia,b) and gla,b] are defined by
K = { b ifa>b

—a otherwise

Ala,b) = h|a,b)

ifa>b
gla,b) =

Rlosis

otherwise.

When we implemented these systems, the results
were inaccurate or unstable because the change in
large sum cells tended to swamp the influence of
smaller, lacal interactions. Therefore we scaled
the interaction with the inverse of the interval b.
This gave a precedence to local interactions that
worked well. Because we still want to refrain for the
moment from modeling the dependence of quanti-
zation on absolute global tempo, which was intro-
duced implicitly by this change, we normalized this
scaling factor with the overall minimum duration.
The factor can be incorporated in the definition of
hla,b):

rnilj}‘ x; ifa>b

- 1sj=N
hlab) =9 _ min x, otherwise.

1=i=N
We would still like to characterize the final time-
quantized equilibrium state for which

Di|x) = 0.

In the simplified network, it can be proven that this
condition only holds when all A(x;, x;,,) are zera.
This implies that the interaction function F has to
be zero for all ratios, which in turn means that all
ratios are integers or integers plus 0.5. When the
sum cells arc introduced, the system is much
harder to analyze. All equilibrium points of the
simplified system are also equilibrium points of the
complete system, but there are many additional

The Quantization of Musical Time 163




Fig. 11. The process model
of the connectionist

quantizer,
1
1 tempo
curve ‘— quantizer relnter- quantizer
fitter pretation
4 iy 4 4
—p| inter- [ — inter-onset interval window — -
pretation

——P  Single inter-onset interval
—> Window of inter-onset intervals

Tempo model

equilibrium points as well. In fact it is not clear yet
what exactly are the (stable) equilibrium poines of
the complete system.

Process Model and Tempo Tracking

A system that takes all of the temporal data avail-
able in a piece into consideration is, of course, not
feasible when the aim is to develop a robust techni-
cal ol for near real-time quantization of longer
pieces, nor is such an algorithm plausible as a cog-
nitive model. Luckily, it proved quite simple to de-
sign a process version of the quantizer that operates
upon a limited window of events. In this system,
new inter-onset intervals shift into the window,
and metrical durations shift out, being quantized
on the way through, With such a model, tempo
tracking becomes an absolute necessity since slow
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global tempo changes spanning a time lapse larger
then the window cannot be vperated upan nor
corrected for.

The architecture we came up with makes use of
two main modules, the quantizer and a tempo +
curve fitter (see Fig, 11). They work in mutual co-
operation, communicating via a window of inter-
onset intervals, In phase 1 [indicated by the
numbered portions of the figure|, the quantizer tries
to yuantize the data in the windaw, The result is
passed, together with the original data, to the
tempo curve fitter, This process tries to explain the
difference between the quantized and original data
as a global tempo change instead of as random fluc-
tuations by fitting a third-order tempo curve to the
quantized and original data. With the resulting
tempo model, the data window is reinterpreted, and
any consistent global change in tempo is remaved
from the original data in phase 2. The resulting se-
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quence is now simpler for the quantizer module to
operate upon. In phase 3 it is given a chance to re-
move the remaining deviations. Finally, in phase 4,
a quantized inter-onset interval is shifted out of the
window, and a new interval is shifted in, after being
interpreted according to the expected tempo. Then
the whole process is repeated on the shifted inter-
val window.

As a result a thythm can be quantized differently
depending on the context cstablished by the preced-
ing data. This of course is the same as we would ex-
pect from human listeners. For the implementation
of the curve fitter, special care was taken to use
appropriate numerical methods, since numerical
inaccuracies build up because of the feedback ar-
chitecture used in the method and can result in
oscillations.

Polyphony

The system described so far is unable to deal with
inter-onset times that approach zero [as in chords
or music with multiple voices). Although it may be
possible to use other means to “clean” the data be-
fore quantizing it, such as rules for recognizing
chord chunks, the general connectionist approach
used in the quantizer seems a much better alterna-
tive. This is because the context can be taken into
account when deciding if for example something is
to be considered a chord with some spread, or 2
regular run of notes, or an arpeggio that has its own
metrical structureé. By introducing note durations,
the system can distinguish between sequential and
simultaneous inter-onset intervals {i.e., overlapping
intervals indicate polyphony). We are currently ex-
perimenting with multiple interlocking networks
that can handle polyphony. The preliminary results
seem to be promising.

Main Characteristics of the System

In summary, the connectionist quantization system
has three main characteristics: {1) Tt is context sen-
sitive, with precedence of local context, as we dem-
onstrated with the example in Fig. 6 and the results
of the clamping method, (2) the system has no ex-
plicit musical knowledge. There is no preconceived
knowledge of metrical or rhythmical structure used
to quantize the performance data other than the no-
tion of “integer ratios.” All information is derived
from the data itself; and |3} the system exhibits
praceful degradation. When the quantizer breaks
down in a complex situation, it is often able to
maintain musical integrity and consistency at
higher levels. The resulting error will only generate
a local deformation of the score. Furthermore, this
deformation will always be a simplification of the
rhythm, not a very complex fragment as produced
by some traditional systems (see Fig. 1}. On the
other hand, when more difficult rhythms are fed
into the quantizer, they imply a smaller range of
deviations than can be accurately captured by the
system. Thus, they will be quantized correctly
when performed with a higher accuracy or consis-
tency. Such behavior could be another possible link
to human cognitive performance.

Finally, 2 new version of the connectionist quan-
tizer code using the loop macro is shown in Table 2.
This version no longer requires the minimum inter-
onset interval to be around one.

Reference
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Table 2. A new micro version of the connectionist quantizer in Common Lisp with the loop macro

; MICRO CONNECTIONIST QUANTIZER
:r¢ (C)1990Q, Desain & Honing
;2 in Common Lisp (uses loop macro)

7

;+: utilities

(define-modify-macro multf (factor) *)
(define-modify-macro divf {factor) /)
(define-modify-macro zerof () (lambda(x)} 0))

(defun print-state (time intervals)
"Print elements of interval wector"
{loop initially (format t "~%~2D: " time)
for index below (length intervals)
do (format t "~2,1,55 " (aref intervals index))))

(defmacro with-adjacent-intervals
(vector (a-begin a~end a-sum b-begin b-end b-sum) &body body}
"Setup environment for each interaction of (sum-)intervals"
‘(loop with length = (length ,vector)
for ,a-begin below (1- length)
do (loop for ,a-end from ,a-begin below (1- length)
sum {aref ,vector ,a-end) into ,a-sum
do (loop with ,b-begin = (1+ ,a-end)
for ,b-end from ,b-begin below length
sum (aref ,vector ,b-end) into ,b-sum
do ,@body))))

;7:; interaction function

(defun delta (a b minimum peak decay)
"Return change for two time intervals"
{let* {(inverted? (<= a b))
(ratio (if inverted? (/ b a)(/ a b)))
(delta-ratio (interaction ratio peak decay})
(proportion (/ delta-ratio (+ 1 ratio delta-ratio))))
(* minimum (if inverted? (- proportion) proportion))))

{defun interaction (ratio peak decay)
"Return change of time interval ratio"
{(* (- (round ratieo) ratio)

(expt (abs (* 2 (- ratio (floor ratio)} 0.5)})) peak)
{expt (round ratio) decay)))
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;::; gquantization procedures

{defun quantize (intervals &key (iterations 20) (peak 3) (decay -1))
"Onantize data of inter-onset intervals"
(let* {(length (length intervals})
(changes (make-array length :initial-element 0.0))
(minimum (loop for index below length
minimize (aref intervals index)))}
(loop for count to iteratioms
do (print-state count intervals)
(update intervals minimum changes peak decay})))

(defun update (intervals minimum changes peak decay)
"gpdate all intervals synchronously"
(with-adjacent-intervals intervals

{a-begin a—end a-sum b-begin b-end b-sum)

{let ((delta (delta a-sum b-sum minimum peak decay)))
{propagate changes a-begin a-end (/ delta a-sum))
{propagate changes b-begin b-end (- {/ delta b-sum)))))

{enforce changes intervals))

{defun propagate (changes begin end change)
“Derive changes of basic-intervals from sum-interval change"
{loop for index from begin to end
do (incf (aref changes index) change)))

{defun enforce (changes intervals)
"gffectuate changes to intervals"
(loop for index below (length intervals)
do (multf (aref intervals index)
(1+ ({aref changes index)})
(zerof (aref changes index})))]}

i;: examples
; (quantize (vector 1.1 2.0 2.9))

; {(quantize (vector 11.77 5.92 2.88 3.37 4.36 3.37 3.87 6,00 6.34
2.96 2.80 2.96 3.46 11.93))
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