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Abstract

Automatic Music Transcription is the extraction of an acceptable notation from performed
music. One important task in this problem is rhythm quantization which refers to catego-
rization of note durations. Although quantization of a pure mechanical performance is rather
straightforward, the task becomes increasingly difficult in presence of musical expression,
i.e. systematic variations in timing of notes and in tempo. For transcription of natural per-
formances, we employ a framework based on Bayesian statistics. Expressive deviations
are modelled by a probabilistic performance model from which the corresponding optimal
quantizer is derived by Bayes theorem. We demonstrate that many different quantization
schemata can be derived in this framework by proposing suitable prior and likelihood distri-
butions. The derived quantizer operates on short groups of onsets and is thus flexible both
in capturing the structure of timing deviations and in controlling the complexity of resulting
notations. The model is trained on data resulting from a psychoacoustical experiment and
thus can mimic the behaviour of a human transcriber on this task.

1 Introduction

Automatic Music Transcription is the extraction of an acceptable musical description from per-
formed music. The interest into this problem is motivated by the desire to design a program,
which creates automatically a notation from a performance. In general, e.g. when directly op-
erating on an acoustical recording of polyphonic music (polyphonic pitch tracking), this task
proved to be a very difficult one and stays yet as an unsolved engineering problem. Surprisingly,
even a virtually simpler subtask still remains difficult, namely, producing an acceptable notation
from a list of onset times (e.g. a sequence of MIDI events) under unconstrained performance
conditions.

Although quantization of a “mechanical” performance is rather straightforward, the task
becomes increasingly difficult in presence of expressive variations, which can be thought as
systematic deviations from a pure mechanical performance. In such unconstrained performance
conditions, mainly two types of systematic deviations from exact values do occur. At small
time scale notes can be played accented or delayed. At large scale tempo can vary, for example
the musician(s) can accelerate (or decelerate) during performance or slow down (ritard) at the
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end of the piece. In any case, these timing variations usually obey a certain structure since
they are mostly intended by the performer. Moreover, they are linked to several attributes of
the performance such as meter, phrase, form, style etc. (Clarke, 1985). To devise a general
computational model (i.e. a performance model) which takes all these factors into account,
seems to be quite hard.

Another observation important for quantization is that we perceive a rhythmic pattern not as
a sequence of isolated onsets but rather as a perceptual entity made of onsets. This also suggests
that attributes of neighboring onsets such as duration, timing deviation etc. are correlated in
some way.

This correlation structure is not fully exploited in commercial music packages, which do
automated music transcription and score type setting. The usual approach taken is to assume
a constant tempo throughout the piece, and to quantize each onset to the nearest grid point im-
plied by the tempo and a suitable pre-specified minimum note duration (e.g. eight, sixteenth
etc.). Such a grid quantization schema implies that each onset is quantized to the nearest grid
point independent of its neighbours and thus all of its attributes are assumed to be independent,
hence the correlation structure is not employed. The consequence of this restriction is that users
are required to play along with a fixed metronome and without any expression. The quality of
the resulting quantization is only satisfactory if the music is performed according to the assump-
tions made by the quantization algorithm. In the case of grid-quantization this is a mechanical
performance with small and independent random deviations.

More elaborate models for rhythm quantization indirectly take the correlation structure of
expressive deviations into account. In one of the first attempt to quantization, Longuet-Higgins
(1987) described a method in which he uses hierarchical structure of musical rhythms to do
quantization. Desain et al. (1992) use a relaxation network in which pairs of time intervals are
attracted to simple integer ratios. Pressing and Lawrence (1993) use several template grids and
compare both onsets and inter-onset intervals (IOI’s) to the grid and select the best quantization
according to some distance criterion. The Kant system Agon et al. (1994) developed at IRCAM
uses more sophisticated heuristics but is in principle similar to (Pressing and Lawrence, 1993).

The common critic to all of these models is that the assumptions about the expressive devia-
tions are implicit and are usually hidden in the model, thus it is not always clear how a particular
design choice effects the overall performance for a full range of musical styles. Moreover it is
not directly possible to use experimental data to tune model parameters to enhance the quanti-
zation performance.

In this paper we describe a method for quantization of onset sequences. The paper is orga-
nized as follows: First, we state the transcription problem and define the terminology. Using
the Bayesian framework we briefly introduce, we describe probabilistic models for expressive
deviation and notation complexity and show how different quantizers can be derived from them.
Consequently, we train the resulting model on experimental data obtained from a psychoacous-
tical experiment and compare its performance to simple quantization strategies.

2 Problem Description

We defined automated music transcription as the extraction of an acceptable description (music
notation) from a music performance. In this study we concentrate on a simplified problem,
where we assume that a list of onset times is provided excluding tempo, pitch or note duration
information. Given any sequence of onset times, we can in principle easily find a notation (i.e. a
sequence of rational numbers) to describe the timing information arbitrarily well. Equivalently,
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we can find several scores describing the same rhythmic figure for any given error rate, where by
error we mean some distance between onset times of the performed rhythm and the mechanical
performance (e.g. as would be played by a computer). Consider the performed simple rhythm
in Figure 1(a) (from Desain and Honing (1991)). A very fine grid quantizer produces a result
similar to Figure 1(b). Although this is a very accurate representation, the resulting notation is
far too complex. Another extreme case is the notation in Figure 1(c). Although this notation is
simple, it is very unlikely that it is the intended score, since this would imply unrealistic tempo
changes during the performance. Musicians would probably agree that the “smoother” score
shown in Figure 1(d) is a better representation. This example suggests that a good score must
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(a) Example: A performed onset sequence
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(b) “Too” accurate quantization. Altough the result-
ing notation represents the performance well, it is
unacceptably complicated.
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(c) “Too” simple notation. This notation is simpler
but is a very poor description of the rhythm.
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(d) Desired quantization balances accuracy and sim-
plicity.

Figure 1: Different Quantizations of an onset sequence.

be “easy” to read while representing the timing information accurately. This is apparently a
trade-off and a quantization schema must balance these two conflicting requirements. In the
following section we will more concretely define what we mean by a simple score and accurate
representation.
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3 Rhythm Quantization Problem

3.1 Definitions

In this section we will give formal definitions of the terms that we will use in the derivations
to follow. A performed rhythm is denoted by a sequence [ti]1 where each entry is the time of
occurrence of an onset. For example, the performed rhythm in Figure 1(a) is represented by
t1 = 0, t2 = 1:18, t3 = 1:77, t4 = 2:06 etc. We will also use the terms performance or rhythm
interchangeably when we refer to an onset sequence.

A very important subtask in transcription is tempo tracking, i.e. the induction of a sequence
of points (i.e. beats) in time, which coincides with the human sense of rhythm (e.g. foot tap-
ping) when listening to music. Significant research has already been done on psychological and
computational modeling aspects of this behavior (Large, 1995; Toiviainen, 1999).

We call such a sequence of beats a tempo track and denote it by ~� = [�j] where �j is the time
at which j’th beat occurs. We note that for automatic transcription, ~� is to be estimated from [ti].

Once a tempo track ~� is given, the rhythm can be segmented into a sequence of segments,
each of duration �j � �j�1. The onsets in the j’th segment are normalized and denoted by
tj = [tkj ] for all �j�1 � ti < �j where

tkj =
ti � �j�1

�j � �j�1
(1)

Here k = 1 : : :Kj where Kj denotes the number of onsets in the j’th segment2. In other words
the onsets are scaled and translated such that an onset just at the end of the segment is mapped
to one and another just at the beginning to zero. The segmentation of a performance is given in
Figure 2.
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Figure 2: Segmentation of a performance by a tempo track (vertical dashed lines) ~� =
[0:0; 1:2; 2:4; 3:6; 4:8; 6:0; 7:2; 8:4]. The resulting segments are t0 = [0], t1 = [0:475; 0:717]
etc.

Once a segmentation is given, quantization reduces to mapping onsets to locations, which
can be described by simple rational numbers. Since in western music tradition, notations are
generated by recursive subdivisions of a whole note, it is also convenient to generate possible
onset quantization locations by regular subdivisions. We let S = [si] denote a subdivision
schema, where [si] is a sequence of small prime numbers. Possible quantization locations are
generated by subdividing the unit interval [0; 1]. At each new iteration i, the intervals already
generated are divided further into si equal parts and the resulting endpoints are added to a set
C . Note that this procedure places the quantization locations on a grid of points cn where two

1We will denote a set with the typical element xj as fxjg. If the elements are ordered (e.g. to form a string) we
will use [xj].

2When an argument applies to all segments, we will drop the index j.
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(c) Performance

Figure 3: A simplified schema of onset quantization. A notation (a) defines a score (b) which
places onsets on simple rational points with respect to a tempo track (vertical dashed lines).
The performer “maps” (b) to a performance (c). This process is not deterministic; in every new
performance of this score a (slightly) different performance would result. A performance model
is a description of this stochastic process. The task of the transcriber is to recover both the tempo
track and the onset locations in (b) given (c).

Figure 4: Two equivalent representations of the notation in Figure 3(a) by a code vector sequence

neighboring grid points have the distance 1=
Q

i si. We will denote the first iteration number at
which the grid point c is added to C as the depth of c with respect to S . This number will be
denoted as d(cjS).

As an example consider the subdivision S = [3; 2; 2]. The unit interval is divided first
into three equal pieces, then the resulting intervals into 2 and etc. At each iteration, generated
endpoints are added to the list. In the first iteration, 0, 1/3, 2/3 and 1 are added to the list. In
the second iteration, 1/6, 3/6 and 5/6 are added, etc. The resulting grid points (filled circles) are
depicted in Figure 5. The vertical axis corresponds to d(cjS).

If a segment t is quantized (with respect to S), the result is a K dimensional vector with all
entries on some grid points. Such a vector we call a code vector and denote as c = [ck], i.e.
c 2 C �C � � � �C = CK. We call a set of code-vectors a codebook. Since all entries of a code
vector coincide with some grid points, we can define the depth of a code vector as

d(cjS) = X
ck2c

d(ckjS) (2)

A score can be viewed as a concatenation of code vectors cj . For example, the notation in Fig-
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ure 3(a) can be represented by a code vector sequence as in Figure 4. Note that the representation
is not unique, both code vector sequences represent the same notation.
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Figure 5: Depth of gridpoint c by subdivision schema S = [3; 2; 2]

3.2 Performance Model

As described in the introduction section, natural music performance is subject to several sys-
tematic deviations. In lack of such deviations, every score would have only one possible in-
terpretation. Clearly, two natural performances of a piece of music are never the same, even
performance of very short rhythms show deviations from a strict mechanical performance. In
general terms, a performance model is a mathematical description of such deviations, i.e. it de-
scribes how likely it is that a score is mapped into a performance (Figure 3). Before we describe
a probabilistic performance model, we briefly review a basic theorem of probability theory.

3.3 Bayes Theorem

The joint probability p(A;B) of two random variables A and B defined over the respective state
spaces SA and SB can be factorized in two ways:

p(A;B) = p(BjA)p(A) = p(AjB)p(B) (3)

where p(AjB) denotes the conditional probability of A given B: for each value of B, this is
a probability distribution over A. Therefore

P
A p(AjB) = 1 for any fixed B. The marginal

distribution of a variable can be found from the joint distribution by summing over all states of
the other variable, e.g.:

p(A) =
X

B2SB

p(A;B) =
X
B2SB

p(AjB)p(B) (4)

6



It is understood that summation is to be replaced by integration if the state space is continuous.
Bayes theorem results from Eq. 3 and Eq. 4 as:

p(BjA) = p(AjB)p(B)P
B2SB p(AjB)p(B)

(5)

This rather simple looking “formula” has surprisingly far reaching consequences and can be
directly applied to quantization. Consider the case that B is a score and SB is the set of all
possible scores. Let A be the observed performance. Then Eq 5 can be written as

p(ScorejPerformance) / p(PerformancejScore)� p(Score) (6)

posterior / likelihood� prior (7)

which combines the goodness of fit of the performance to the score (the likelihood) with the prior
belief in the score to give the posterior belief in the model after we see the data. In this frame-
work, a performance model is the conditional probability distribution p(PerformancejScore).
Finding the best score given some performance requires the simultaneous optimization of the
performance model and the prior.

By using our definitions of a code vector c and a segment t, Eq. 6 is equivalent to a maximum
a-posteriori (MAP) estimation problem given as

p(cjt) / p(tjc)p(c) (8)

where the best code vector c� is given by

c
� = argmax

c2CK
p(cjt) (9)

We can also define a related quantity L (minus log-posterior) and try to minimize this quantity
rather then maximizing Eq. 8 directly. This simplifies the form of the objective function without
changing the locations of local extrema since log(x) is a monotonically increasing function.

L = � log p(cjt) / � log p(tjc) + log
1

p(c)
(10)

The � log p(tjc) term in Equation 10 can be interpreted as a distance measuring how far the
rhythm is played from the perfect mechanical performance. The log 1

p(c) term, which is large
when the prior probability p(c) of the codevector is low, can be interpreted as a complexity
term, which penalizes complex notations. The best quantization balances these two terms in an
optimal way.

The form of a performance model can be in general very complicated. However, in this arti-
cle we will consider a subclass of performance models where the expressive timing is assumed
to be an additive noise component which depends on c. The model is given by

tj = cj + "j (11)

where "j is a vector which denotes the expressive timing deviation. In this paper we will assume
that " is normal distributed with zero mean and covariance matrix �"(c), i.e. the correlation
structure depends upon the code vector. We denote this distribution as " � N (0;�"(c)). Note
that when " is the zero vector, (�" ! 0), the model reduces to a so-called “mechanical” perfor-
mance.
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Figure 6: Quantization of an onset as Bayesian Inference. When p(c) = [1=2; 1=2], at each t, the
posterior p(cjt) is proportional to the solid lines, and the decision boundary is at t = 0:5. When
the prior is changed to p(c) = [0:3; 0:7] (dashed), the decision boundary moves towards 0.

3.4 Example 1: Scalar Quantizer (Grid Quantizer)

We will now demonstrate on a simple example how these ideas are applied to quantization.
Consider a one-onset segment t = [0:45]. Suppose we wish to quantize the onset to one of

the endpoints, i.e. we are using effectively the codebook C = f[0]; [1]g. The obvious strategy
is to quantize the onset to the nearest grid point (e.g. a grid quantizer) and so the code-vector
c = [0] is chosen as the winner.

The Bayesian interpretation of this decision can be demonstrated by computing the corre-
sponding likelihood p(tjc) and the prior p(c). It is reasonable to assume that the probability of
observing a performance t given a particular c decreases with the distance jc� tj. A probability
distribution having this property is the normal distribution. Since there is only one onset, the
dimension K = 1 and the likelihood is given by

p(tjc) = 1p
2��

exp(�(t� c)2

2�2
)

If both codevectors are equally probable, a flat prior can be choosen, i.e. p(c) = [1=2; 1=2]. The
resulting posterior p(cjt) is plotted in 6. The decision boundary is at t = 0:5, where p(c1jt) =
p(c2jt). The winner is given as in Eq. 9

c� = argmax
c

p(cjt)
Different quantization strategies can be implemented by changing the prior. For example if

c = [0] is assumed to be less probable, we can choose another prior, e.g. p(c) = [0:3; 0:7]. In
this case the decision boundary shifts from 0:5 towards 0 as expected.

3.5 Example 2: Vector Quantizer

Assigning different prior probabilities to notations is only one way of implementing different
quantization strategies. Further decision regions can be implemented by varying the conditional
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probability distribution p(tjc). In this section we will demonstrate the flexibility of this approach
for quantization of groups of onsets.

0.
45

0.
52

Figure 7: Two Onsets

Consider the segment t = [0:45; 0:52] depicted in Figure 7. Suppose we wish to quantize
the onsets again only to one of the endpoints, i.e. we are using effectively the codebook C =
f[0; 0]; [0; 1]; [1; 1]g. The simplest strategy is to quantize every onset to the nearest grid point
(e.g. a grid quantizer) and so the code-vector c = [0; 1] is the winner. However, this result
might be not very desirable, since the inter-onset interval (IOI) has increased more than 14
times, (from 0.07 to 1). It is less likely that a human transcriber would make this choice since
it is perceptually not very realistic. We could try to solve this problem by employing another
strategy : If � = t2 � t1 > 0:5, we use the code-vector [0; 1]. If � � 0:5, we quantize to one
of the code-vectors [0; 0] or [1; 1] depending upon the average of the onsets. In this strategy the
quantization of [0:45; 0:52] is [0; 0].

Although considered to be different in the literature, both strategies are just special cases
which can be derived from Eq. 10 by making specific choices about the correlation structure
(covariance matrix �") of expressive deviations. The first strategy assumes that the expressive
deviations of both onsets are independent of each other. This is apparantly not a very realis-
tic model for timing deviations in music. The latter corresponds to the case where onsets are
linearly dependent; it was assumed that t2 = t1 + � and only � and t1 were considered in quan-
tization. This latter operation is merely a linear transformation of onset times and is implied by
the implicit assumption about the correlation structure. Indeed some quantization models in the
literature focus directly on IOI’s rather then on onset times.

More general strategies, which can be quite difficult to state verbally, can be specified by

different choices of �" and p(c). Some examples for the choice �" =

 
1 �
� 1

!
and constant

p(c) are depicted in Figure 8. The ellipses denote the set of points which are equidistant from the
center and the covariance matrix �" determines their orientation. The lines denote the decision
boundaries. The interested reader is referred to Duda and Hart (1973) for a discussion of the
underlying theory.

3.5.1 Likelihood for the Vector Quantizer

For modeling the expressive timing " in a segment containing K onsets, we propose the follow-
ing parametric form for the covariance matrix

�"(c) = �2

0
BBBBB@

1 �1;2 � � � �1;K

�1;2 1 �n;m
...

... �n;m
. . .

...
�1;K � � � � � � 1

1
CCCCCA (12)

where

�n;m = � exp(��2

2
(cm � cn)

2) (13)
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Here, cm and cn are two distinct entries (grid points) of the code vector c. In Eq. 13, � is a
parameter between -1 and 1, which adjust the amount of correlation strength between two onsets.
The other parameter � adjusts the correlation as a function of the distance between entries in the
code vector. When � is zero, all entries are correlated by the equal amount, namely �. When �
is large, the correlation approaches rapidly to zero with increasing distance.

This particular choice for p(") reflects the observation that onsets, which are close to each
other, tend to be highly correlated. This can be interpreted as follows: if the onsets are close to
each other, it is easier to quantify the IOI and then select an appropriate translation for the onsets
by keeping the IOI constant. If the grid points are far away from each other, the correlation tends
to be weak (or sometimes negative), which suggests that onsets are quantized independently of
each other. In section 4, we will verify this choice empirically.

3.5.2 Prior for the Vector Quantizer

The choice of the prior p(c) reflects the complexity of codevector c. In this article we propose
a complexity measure from a probabilistic point of view. In this measure, the complexity of a
codevector c = [ci] is determined by the depth of ci with respect to the beat (See Eq. 2) and the
time signature of the piece. See Figure 9.

The prior probability of a code-vector with respect to S is chosen as

p(cjS) / e�
d(cjS) (14)

Note that if 
 = 0, then the depth of the codevector has no influence upon its complexity. If it
is large, (e.g. 
 � 1) only very simple rhythms get reasonable probability mass. This choice
is also in accordance with the intuition and experimental evidence: simpler rhythms are more
frequently used then complex ones. The marginal prior of a codevector is found by summing
out all possible subdivision schemes.

p(c) =
X
S

p(cjS)p(S) (15)

where p(S) is the prior distribution of subdivision schemas. For example, one can select possible
subdivision schemas as S1 = [2; 2; 2], S2 = [3; 2; 2], S3 = [2; 3; 2]. If we have a preference
towards the time signature (4/4), the prior can be taken as p(S) = [1=2; 1=4; 1=4]. In general,
this choice should reflect the relative frequency of time signatures. We propose the following
form for the prior of S = [si]

Table 1: w(si)

si 2 3 5 7 11 13 17 o/w
w(si) 0 1 2 3 4 5 6 1

p(S) / e��
P

i
w(si) (16)

where w(si) is a simple weighting function given in Table 1. This form prefers subdivisions by
small prime numbers, which reflects the intuition that rhythmic subdivisions by prime numbers
such as 7 or 11 are far less common then subdivisions such as 2 or 3. The parameter � distributes
probability mass over the primes. When � = 0, all subdivision schemata are equally probable.
As � !1, only subdivisions with si = 2 have non-zero probability.
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4 Verification of the Model

To choose the likelihood p(tjc) and the prior p(c) in a way which is perceptually meaningful,
we analyzed data obtained from an psychoacoustical experiment where ten well trained subjects
(nine conservatory students and a conservatory professor) have participated Desain et al. (1999).
The experiment consisted of a perception task and a production task.

4.1 Perception Task

In the perception task the subjects were asked to transcribe 91 different stimuli. These rhythms
consisted of four onsets t0 : : : t3 where t0 and t3 were fixed and occur exactly on the beat (Fig-
ure 10). First a beat is provided to subjects (count in), and then the stimulus is repeated 3 times
with an empty bar between each repetition. Subjects were allowed to use any notation as a
response and listen to the stimulus as much as they wanted. In total, subjects used 125 differ-
ent notations, from which 57 were used only once and 42 are used more than three times. An
example is depicted in Figure 11(a). From this data, we estimate the posterior as

q(cjjtk) = nk(cj)=
X
j

nk(cj)

where nk(cj) denotes the number of times the stimulus tk is associated with the notation cj .

4.2 Production Task

In the production task the subjects are asked to perform the rhythms that they have notated in
the perception task. An example is shown in Figure 11(a). For each notation cj we assume a
gaussian distribution where

q̂(tjcj) = N (�j ;�j) (17)

The mean and the covariance matrix are estimated from production data by

�j =
1

Nj

X
k

tk;j (18)

�j =
1

Nj � 1

X
k;l

(tk;j � �j)(tl;j � �j)
T (19)

where tk;j is the k’th performance of cj and Nj is the total count of these performances in
the data set. In Section 3.5.1 we proposed a model in which the correlation between two onset
decreases with increasing inter-onset interval. The correlation coefficient and the estimated error
bars are depicted in Figure 12, where we observe that the correlation decreases with increasing
distance between onsets.

4.3 Estimation of model parameters

The probabilistic model p(cjt) described in the previous section can be fitted by minimizing the
“distance”to the estimated target q(cjt). A well known distance measure between two proba-
bility distributions is the Kullback-Leiber divergence (Cover and Thomas, 1991) which is given
as

KL(qjjp) =
Z
dxq(x) log

q(x)

p(x)
(20)
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The integration is replaced by summation for discrete probability distributions. It can be shown
(Cover and Thomas, 1991) that KL(qjjp) � 0 for any q; p, and vanishes if and only if q = p.

The KL divergence is an appropriate measure for the rhythm quantization problem. We
observe that for many stimuli, subjects give different responses and consequently it is difficult to
choose just one “correct” notation for a particular stimulus. In other words, the target distribution
q(cjt) has its mass distributed among several codevectors. By minimizing the KL divergence
one can approximate the posterior distribution by preserving this intrinsic uncertainty.

The optimization problem for the perception task can be set as

min : KL(q(cjt)s(t)jjp(cjt)s(t)) (21)

s.t. � > 0

�1 < � < 1

�; �; 
 unconstrained

where s(t) / P
k �(t � tk) is the distribution of the stimuli. This is a distribution, which has

positive mass only on the stimuli points tk. This measure forces the model to fit the estimated
posterior at each stimulus point tk. We note that

p(cjt) =
p(tjc;�; �; �)p(c; �; 
)P
c p(tjc;�; �; �)p(c; �; 
)

(22)

This is in general a rather difficult optimization problem due to the presence of the denominator.
Nevertheless, since the model has only five free parameters, we were able to minimize Eq. 21
by a standard BFGS Quasi-Newton algorithm (MATLAB function fminu). In our simulations,
we observed that the objective function is rather smooth and the optimum found is not sensitive
to starting conditions, which suggests that there are not many local minima present.

4.4 Results

The model is trained on a subset of the perception data by minimizing Eq. 21. In the training, we
used 112 different notations (out of 125 that the subjects used in total), which could be generated
by one of the subdivision schemas in Table 2. To identify the relative importance of model
parameters, we optimized Eq. 21 by clamping some parameters. We use a labeling of different
models as follows: Model-I is the “complete” model, where all parameters are unclamped.
Model-II is an onset quantizer (� = �2

I), where only prior parameters are active. Model-III is
(almost) an IOI quantizer where the correlation between onsets is taken to be � = 0:98. Model-
IV is similar to Model I with the simplification that the covariance matrix is constant for all
codevectors. Since � = 0, � = �. Model-V is an onset quantizer with a flat prior, similar to
the quantizers used in commercial notation packages and Model-VI has only the performance
model parameters active.

In Model-VII, the parameters of the performance model p(tjc) are estimated from the pro-
duction data. The model is fitted to the production data q̂ by minimizing

KL(q̂(tjc)q(c)jjp(tjc)q(c)) (23)

where q(cj) =
P

k nk(cj)=
P

k;j nk(cj), i.e. a histogram obtained by counting the subject re-
sponses in the perception experiment.

Although approximating the posterior at stimuli points is our objective in the optimiza-
tion, for automatic transcription we are also interested into the classification performance. At
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each stimuli tk, if we select the response which the subjects have chosen the most, i.e. c
�
k =

arg maxc q(cjtk), we can achieve maximum possible classification rate on this dataset, which is
given as

CRTarget =
nk(c�k)

Z
� 100 (24)

Here, Z =
P

k;c nk(c
�
k), the total number of measurements. Similarly, if we select the codevector

with the highest predicted posterior c�k = arg maxc p(cjtk) at each stimulus, we achieve the
classification rate of the Model denoted as CRModel. The results are shown in Table 3. The
clamped parameters are tagged with an ‘=’ sign. The results are for a codebook consisting of
112 codevectors, which the subjects have used in their responses and could have been generated
by one of the subdivisions in Table 2.

i Si
1 [2, 2, 2, 2]
2 [3, 2, 2]
3 [3, 3, 2]
4 [5, 2]
5 [7, 2]
6 [11]
7 [13]
8 [5, 3]
9 [17]
10 [7, 3]

Table 2: Subdivisions

Model Prior Likelihood Results
Label � 
 � � � KL CRModel=CRTarget

I 1.35 0.75 0.083 2.57 0.66 1.30 77.1
II 1.34 0.75 0.086 = 0 = 0 1.41 71.3
III 1.33 0.77 0.409 = 0 = 0.98 1.96 51.4
IV 1.34 0.74 0.084 = 0 0.39 1.34 75.3
V = 0 = 0 0.085 = 0 = 0 1.92 29.7
VI = 0 = 0 0.083 2.54 0.66 1.89 32.7
VII 1.43 0.79 ! 0.053 ! 3.07 ! 0.83 1.89 84.3

Table 3: Optimization Results. CRTarget = 48:0. Values tagged with a ‘=’ are fixed during
optimization. Values estimated from the production experiment are tagged with a ‘!’. The
meanings of the columns are explained in the text.

Model-I performs the best in terms of the KL divergence, however the marginal benefit
obtained by choosing a correlation structure, which decreases with increasing onset distances
(obtained by varying �) is rather small. One can achieve almost the same performance by having
a constant correlation between onsets (Model-IV). By comparing Model-IV to Models II and
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III, we can say that under the given prior distribution the subjects are employing a quantization
strategy, which is somehow between a pure onset quantization and IOI-quantization. The choice
of the prior is very important which can be seen from the results of Model-V and Model-VI,
which perform poor due to the flat prior assumption.

Model-VII suggests that for this data set (under the assumption that our model is correct) the
perception and production processes are different. This is mainly due to the spread parameter
�, which is smaller for the production data. The interpretation of this behavior is that subjects
deviate less from the mechanical mean in a performance situation. However, this might be due
to the fact that performances were carried out in lack of any context, which forces the subjects to
concentrate on exact timing. It is interesting to note that almost the same correlation structure is
reserved in both experiments. This suggests that there is some relation between the production
and perception process. The classification performance of Model-VII is surprisingly high; it
predicts the winner accurately. However the prediction of the posterior is poor, which can be
seen by the high KL divergence score.

For visualization of the results we employ an interpolation procedure to estimate the target
posterior at other points than the stimuli (See Appendix A). The rhythm space can be tiled
into regions of rhythms, which are quantized to the same codevector. Estimated tiles from
experimental data are depicted in Figure 13(a).

In practice, it is not feasible to identify explicitly a subset of all possible codevectors, which
have non-zero prior probability. For example, the number of notations which can be generated
by subdivisions in Table 2 is 886 whereas the subjects used only 112 of these as a response. This
subset must be predicted by the model as well. A simple grid quantizer tries to approximate this
subset by assigning a constant prior probability to codevectors only up to a certain threshold
depth. The proposed prior model can be contrasted to this schema in that it distributes the
probability mass in a perceptually more realistic manner. To visualize this, we generated a
codebook consisting of all 886 codevectors. The tilings generated by Model-I and Model-V for
this codebook are depicted in Figure 13(b) and 13(c). To compare the tilings, we estimate the
ratio

Match =
Amatch

Atotal
� 100 (25)

where Amatch is the area where the model matches with the target and Atotal is the total area of
the triangle. Note that this is just a crude approximation to the classification performance under
the assumption that all rhythms are equally probable. The results are shown in Table. 4.

I II III IV V VI VII
Match 58.8 53.5 36.1 59.0 3.8 3.1 56.7

Table 4: Amount of match between tilings generated by the target and models

5 Discussion and Conclusion

In this article, we developed a vector quantizer for transcription of musical performances. We
considered the problem in the framework of Bayesian statistics where we proposed a quantizer
model. Experimentally, we observe that even for quantization of simple rhythms, well trained
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subjects give quite different answers, i.e. in many cases, there is not only one correct notation.
In this respect, probabilistic modeling provides a natural framework. The model is verified and
optimized by data obtained from the psychoacoustical experiment. The optimization results
suggest that prior and likelihood parameters are almost independent, since clamping one set
of parameters affects the optimal values of others only very slightly. This property makes the
interpretation of the model easier.

It is important to note that in the derivations we did not used any other attributes of notes
(e.g. duration, pitch), which give additional information for better quantization. Another point
is that in quantization of real performances, context information plays also an important role.
The main advantage of Bayesian framework is that all such improvements can be integrated by
modifying the likelihood and prior distributions suitably. As already demonstrated, since all the
assumptions are stated as distributions, corresponding optimal parameters can be estimated from
experimental data.
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A Estimation of the posterior from subject responses

Let tk be the stimuli points. The histogram estimate at tk is denoted by q(cjjtk). We define a
kernel

G(t; t0; �) = exp(� 1

2�2
kt� t0k2) (26)

where kxk is the length of the vector x. Then the posterior probability of cj at an arbitrary point
t is given as

q(cjjt) =
X
k

�k(t)q(cjjti) (27)

where �k(t) =
G(t;tk;�)P
r
G(t;tr;�)

. We have taken � = 0:04.
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Figure 8: Tiling for choices of � and constant p(c). Onset quantization (i.e. grid quantiza-
tion) used by many commercial notation packages corresponds to the case where � = 0. IOI
quantization appears when � ! 1. Note that different correlation structures imply different
quantization decisions, not necessarily onset- or IOI-quantization. The cross corresponds to the
rhythm t = [0:45; 0:52].
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(a) In lack of any other context, both onset sequences will sound the same.
However the first notation is more complex

4
4

� � � � �

3

� �

3
4

�� �
�

� �
�

� �� � � �
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Figure 9: Complexity of a notation
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Figure 10: Stimulus of the Perception Task
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Figure 11: Perception and Production of the rhythm [2 1 1] (c = [0.5 0.75]). The diamond
corresponds to the mechanical performance. In 11(a), the size of the circles is proportional to
the estimated posterior q(cjjtk). In 11(b), the dots correspond to performances of the rhythm.
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Figure 12: Estimated correlation coefficient as a function of �c = (c2 � c1) on all subject
responses.
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(c) Model-V: (�; 
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Figure 13: Tilings of the rhythm space by c
� = argmax

c

p(cjt). The tiles denote the sets of

rhythms, which would be quantized to the same codevector. Both Model-I and Model-V use
the same codebook of 886 codevectors. Since Model-V assigns the same prior probability to
all codevectors, the best codevector is always the nearest codevector (in Euclidian distance) and
consequently the rhythm space is highly fragmented.
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