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ABSTRACT

We describe a computational model of rhythmic cognition that pre-
dicts expected onset times. A dynamic representation of musical
rhythm, the multiresolution analysis using the continuous wavelet
transform is used. This representation decomposes the temporal
structure of a musical rhythm into time varying frequency compo-
nents in the rhythmic frequency range (sample rate of 200Hz). Both
expressive timing and temporal structure (score times) contribute in
an integrated fashion to determine the temporal expectancies. Fu-
ture expected times are computed using peaks in the accumulation
of time-frequency ridges. This accumulation at the edge of the anal-
ysed time window forms a dynamic expectancy. We evaluate this
model using data sets of expressively timed (or performed) and gen-
erated musical rhythms, by its ability to produce expectancy pro-
files which correspond to metrical profiles. The results show that
rhythms of two different meters are able to be distinguished. Such a
representation indicates that a bottom-up, data-oriented process (or
a non-cognitive model) is able to reveal durations which match met-
rical structure from realistic musical examples. This then helps to
clarify the role of schematic expectancy (top-down) and it’s contri-
bution to the formation of musical expectation.

I. MUSICAL EXPECTATION

Understanding the processes behind the generation of expect-
ancy in music has become a key research question (Meyer,
1956; Jones and Boltz, 1989; Huron, 2006). Given only rhyth-
mic stimuli (everything else being equal), how do temporal
expectations of musical events arise?

Bharucha (1993, 1994) distinguished between veridical
and schematic musical expectancies. The former describes
expectations during the performance of a particular piece of
music while the latter form of expectation arise from abstract-
ing from particular pieces to unifying mental schemas. Huron
(2006) most recently has distinguished the terminology fur-
ther, reserving veridical expectancy for the expectation of a
performance of a previously heard piece. He then termed
dynamic expectation as the prediction of future events while
listening to a piece of music that has been previously unheard.

While many dimensions of music invoke expectations, such
percepts can arise in rhythm alone, purely from a temporal
structure, with no distinguishing melodic, intensity or other
accentuations. To study rhythmic expectation, we propose a
multiresolution model of musical rhythm in Section II. and
evaluate that in Section III. with data sets of generated and
recorded rhythms.

II. A MULTIRESOLUTION MODEL OF
EXPECTANCY

A number of models of musical rhythm have been proposed,
including oscillator based approaches (Scarborough et al., 1990;
Large and Kolen, 1994; Large and Jones, 1999). A less re-
searched approach is the use of multiple resolution represen-
tations (Todd, 1994a; Smith and Kovesi, 1996; Todd et al.,
1999). These represent a rhythmic signal as a pyramid of
time-frequency components (wavelets), decomposing the rhythm
into short-term periodicities. This representation brings out
salient periodicities, similar to the behaviour of a large (more
than 100) bank of highly damped oscillators.

Expectation is modelled as a set of predictions of future
onsets generated from a combined time-frequency represen-
tation of a rhythm. This representation is generated by a
continuous wavelet transform (CWT) operating on a tempo-
ral window containing past events. This represents musical
time as a bank of simultaneous short term periodicities or
oscillations. Such multiresolution representations of rhythm
have been previously demonstrated to reveal periodicities in
the temporal structure of onsets matching rhythmic structure
of the music (Todd, 1994b; Smith, 1996; Smith and Kovesi,
1996; Smith and Honing, 2007, 2008).

A. Continous Wavelet Transform

The CWT (Holschneider, 1995; Mallat, 1998) decomposes a
time t varying signal s(t) onto scaled and translated versions
of a mother-wavelet g(t),

Wb,a =
1√
a

∫ ∞

−∞
s(τ) · ḡ(

τ − b

a
) dτ , a > 0, (1)

where ḡ(t) is the complex conjugate and a is the scale pa-
rameter, controlling the dilation of the window function, ef-
fectively stretching the window geometrically over time. The
translation parameter b centers the window in the time do-
main. The geometric scale gives the wavelet transform a
“zooming” capability over a logarithmic frequency range, such
that high frequencies are localised by the window over short
time scales, and low frequencies are localised over longer
time scales. The CWT indicated in Equation 1 is a scaled
and translated instance from a bank of an infinite number of
constant relative bandwidth (Q) filters. For a discrete imple-
mentation, a sufficient density of scales (a) or “voices” per
octave is required.
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Grossmann et al. (1989)’s mother-wavelet for g(t) is a
scaled complex Gabor function (Gabor, 1946),

g(t) = e−t2/2 · ei2πω0t, (2)

where ω0 is the frequency of the mother-wavelet before it is
scaled. The Gaussian envelope over the complex exponential
provides the best possible simultaneous time/frequency local-
isation (Grossmann et al., 1989), respecting the Heisenberg
uncertainty relation. This ensures that all short term period-
icities contained in the rhythm will be captured in the analy-
sis. The time domain of s(t) which can influence the wavelet
output Wb0,a0 at the point (b0, a0) is an inverted logarithmic
cone with its vertex at (b0, a0), equally extending bidirection-
ally in time. Where impulses fall within the time extent of a
point, Wb0,a0 will return a high energy value. In this appli-
cation ω0 = 6.45 by calibrating the maximum output Wbi,ai

against an isochronous impulse train.
By the “progressive” nature of Equation 2 (Grossmann

et al., 1989; Holschneider, 1995), the real and imaginary com-
ponents of Wb,a are the Hilbert transform of each other. These
are computed as magnitude and phase components and can
then be reduced to time-frequency ridges which minimally
describe the time varying frequency components in the sig-
nal, known collectively as a skeleton (Tchamitchian and Torrésani,
1992; Smith and Honing, 2008).

Since a musical rhythm can be induced from mere clicks
alone, the rhythm is typically represented for CWT analysis
as a sparse set of impulses at the time of each onset, sampled
at 200Hz, capturing the temporal structure. An alternative
representation derived directly from an audio signal, the onset
saliency trace has also been successfully used to analyse and
accompany the rhythm of sung vocals (Coath et al., 2008).
When applied to musical rhythm, a ridge is an oscillation at
a rhythmic frequency, over a period of time, incorporating
rubato. Ridges function as beat periods of a rhythm that are
perceptually prominent. For each rhythm, its skeleton then
represents the entire candidate set of beat periods available to
a listener to attend to.

B. Dynamic Temporal Expectancy

Each wavelet coefficient Wb,a represents a short-term peri-
odicity at every time point b, so the frequency at an instant
in time t can be determined from the scale parameter a and
therefore also its wavelength. These may be interpreted as
the forward projection (i.e. an estimate) in time for a future
onset tk = t + 2a/v , where v is the number of voices per
octave (16 in this application).

Within the analyzed time window, the magnitude of the
wavelet coefficient |Wb,a| is used as a measure of confidence
(likelihood) of the expectancy prediction.

Ridges, which identify scales a of magnitude peaks, corre-
spond to projection times with highest likelihoods of an onset
occurring. The multiple ridges that may exist at a particular
time point in the skeleton represents multiple simultaneous
hypotheses of the next expected onset time. Dynamic tempo-

Figure 1. Tempo preference profile used for weighting ex-
pectation confidences.

ral expectancy is then defined as a weighted set of all expec-
tations from a given moment in time.

Expectation into the future—beyond the rhythm signal cur-
rently recorded—is determined at the most recent edge of the
analysis window. In terms of Bayesian probability, the like-
lihood of each estimated projection time is determined from
the evidence observed in the time window. The evidence over
the time window is the ridge presence Pa (Smith and Honing,
2007), amassed by summing the occurrence of ridge scales a
over the time of the rhythm and normalising for its duration
B:

Pa =
B−1∑
b=0

ridge(Wb,a)
B

, (3)

where ridge() is the normalised ridge peak function, derived
from the magnitude local maxima of each wavelet coefficient
Wb,a, described in detail in Smith and Honing (2008). Sum-
ming the ridges rather than simply integrating the scaleogram
magnitude reduces the averaging effect of time-frequency un-
certainty, resulting in more accurate predictions in time.

The ridge presence profile (over all scales a ∈ A) is then
weighted for absolute tempo constraints. This consists of a
concatenated Gaussian envelope with a mean at a period of
720 milliseconds (Parncutt, 1994), shown in Figure 1. Time
periods shorter than the mean are weighted by a Gaussian
of 1 octave per standard deviation, periods longer than the
mean are weighted by a Gaussian of 2 octaves per standard
deviation. This is designed to allow lower confidence long
term projections to still be produced. Peaks in the ridge pres-
ence profile which are w = 0.5 standard deviations above
the mean ridge presence peak values are then chosen as the
projected expectations.

III. EVALUATION

To evaluate the model, two experiments were performed. The
first using a Monte-Carlo simulation of the space of possi-
ble metrical rhythms to test the ability to produce expecta-
tion. The second test used a data set of performed musical
rhythms (Temperley, 2007). Additionally, individual rhythms
were verified for correct expectation times.
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A. Sampling the Metrical Rhythm Space

The model was tested on sets of rhythms drawn from the to-
tal space of possible strictly metrical rhythms. These were
generated randomly, whilest conforming to a given meter. A
Monte-Carlo simulation was used to select from the large me-
ter space (Desain and Honing, 1999). Profiles of the metrical
position of onsets of the sample rhythms are shown in Fig-
ure 2 for two different meters. These are derived by weight-
ing an empty interonset-interval (IOI) occurrence at each met-
rical level to 40% chance. These profiles consistently match
the theoretical hierarchies reported by Palmer and Krumhansl
(1990, Figure 1, pp. 731). Each rhythm used a fixed min-
imum semiquaver (16th note) of 150 milliseconds (30 sam-
ples). The binary 4

4 meter rhythms were generated with 6
measures and the ternary 3

4 meter rhythms with 8 measures,
producing identical duration rhythms so only the temporal
structure differed between the two meter groups.

These generated rhythms were then analysed with the mul-
tiresolution rhythm model described in Section II.. The ex-
pectation histograms for the two sets of metrical rhythms are
shown in Figure 3. The accumulated confidence of an expec-
tation time is the summation each rhythm’s confidences of
that time. Therefore the confidences are compared in relative
terms. Since the duration of each generated rhythm measure
(bar) is known, the expectation times are plotted on the ab-
scissa axis as divisions of the measure. This is to compare
the expectation times to the established rhythmic context.

Plotted behind the expectancy histograms are the corre-
sponding metrical tree structures. These trees compare closely
to the metrical profiles in Figure 2. The confidence accu-
mulated over the set of rhythms shows noticeable peaks at
divisions of the measure which corresponds to metrical sub-
division boundaries. For example, for the 3

4 metrical set in
Figure 3, peaks occur at the 8.33, 8.66 and 9 measure posi-
tions, corresponding to the three crotchets (quarter notes) of
that meter.

The expectation times and their relative confidence can
also be compared to the occurrence of a given interval in
the rhythms, as shown in Figure 4. For the 4

4 meter exam-
ple, there is a relatively strong peak at the seventh measure
boundary compared to the IOI of 16 semiquavers (one mea-
sure), and a very strong peak at approximately half the mea-
sure (6.5, a minim duration), compared to the IOI of 8 semi-
quavers.

The expectations are well spread over several measures.
This is due to there being a number of alternative expectation
times generated at the end of each rhythm. While there are
multiple alternatives, the relative confidence weights the like-
lihood of such intervals. This allows for possible subdivisions
such as triplets in a binary rhythm. The relative confidence
decays with further distance from the end of the rhythm, mod-
elling a recency bias. This is an artifact of the energy conser-
vation of the CWT, such that low frequency components have
lower energy (i.e. confidence) spread over greater periods of
time.

B. Performed Rhythms

The expectation model was also tested on a data set of per-
formed musical rhythms, a set of MIDI keyboard performances
of a subset of the Essen folk song collection (Temperley,
2007). Since some examples were significantly longer than
others, a maximum of the starting 15 seconds of the rhythm
was used. This was intended to test if the expectation can be
formed quickly, matching human skills. Only the 3

4 and 4
4

pieces in the data set were tested in this experiment. Since
the pieces were performed with a freely chosen tempo, the
period of the measure is not fixed over the piece, or between
pieces. In order to then evaluate the accuracy of the expec-
tation times, they were divided by the minimum IOI, consti-
tuting the hypothesised temporal atom (Bilmes, 1993, (aka
tatum)).

The accumulated confidences for the two metrical sets of
expectancies are shown in Figure 5. On the rhythms in the 3

4
meter, expectations appear at ternary multiples of the tatum,
that is, around 3, 6 and 12 multiples of the minimum IOI
(roughly corresponding to a semiquaver). This does not match
the structure of the meter and would appear to be binary sub-
divisions of the meter period. With the strong peak at 6
tatums, the expectancies for this set would seem closer to 6

8 .
On rhythms in the 4

4 meter, expectations accumulate around
binary multiples of the tatum, at 4, 8 and 16 multiples and
more closely matches the intended meter. There does seem
to be sufficient evidence to distinguish the two meters, how-
ever, since the profiles do significantly differ.

IV. IMPLICATIONS

This paper demonstrates that an expectation profile can be
produced which corresponds to the transcribed meter of a
rhythm. This indicates the degree that meter may emerge
from a dynamic (bottom-up) expectation process. This then
helps to clarify the role of schematic expectancy (top-down)
and it’s contribution to the formation of complete musical ex-
pectation. It can be hypothesised that schematic expectancy
acts as a selection mechanism, rationing attentional resources
(Jones and Boltz, 1989) to select from the candidate dynamic
expectation. However this would also seem to be a task spe-
cific process, more attention would seem to be needed to ac-
company a rhythm, and adjust for contradicted expectations,
than simply to listen, expecting and then confirming onsets
falling over a short time span. The separation of the bottom-
up and top-down processes enables these task specific pro-
cesses to be explored.

Despite the current results, there is at least one shortcom-
ing of the approach. Estimating time from the frequency
(scale), is inherently inaccurate, and certainly accounts for
part of the spread of expectations. Using the phase derived
from the multiresolution analysis to address this is a current
project. The CWT analysis functions across a time window
in a non-causal fashion. This models, and therefore implies,
that there is a leaky integration process constituting the short
term memory. The exact behaviour of the update of this win-
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Figure 2. Metrical profiles for random samples of randomly generated metrical rhythms.

Figure 3. Accumulated expectancy profiles for random samples of randomly generated metrical rhythms. The canonical
metrical trees are shown in blue behind the expectancy profiles. Peaks in the expectancy profiles correspond to major metrical
subdivisions.

Figure 4. Histograms of the interonset intervals found in the set of rhythms analysed in Figure 3.
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Figure 5. Accumulated expectancy profiles for rhythms taken from Temperleys performances of the Essen folk song col-
lection (Temperley, 2007) for two meters. The abscissa axis is in tatums, representing the expectation time as a ratio of the
minimum IOI in each rhythm. For tatum multiples approximating semiquavers, there are peaks in the accumulated expectancy
approximating the metric multiples (4, 8 and 16) for 4

4 . There is only the measure period (12 tatums) as evidence for 3
4 , with

peaks appearing for ternary subdivisions (3, 6 and 9).

dowed short term memory remains an open question.
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