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ABSTRACT

A dynamic representation of musical rhythm, the multireso-
lution analysis using the continuous wavelet transform (CWT),
is evaluated using a dataset of the interonset intervals of 105
national anthem rhythms. This representation decomposes
the temporal structure of a musical rhythm into time vary-
ing frequency components in the rhythmic frequency range
(sample rate of 200Hz). Evidence is presented that the beat
(typically quarter-note or crochet) and the bar (measure) du-
rations of each rhythm are revealed by this transform. Such
evidence suggests that the pattern of time intervals, when an-
alyzed with the CWT, function as features that are used in
the process of forming a metrical interpretation. Since the
CWT is an invertible transform of the interonset intervals in
each rhythm, this result is interpreted as setting a minimum
capability of discrimination that any perceptual model of beat
or meter can achieve. It indicates that a bottom-up, data-
oriented process (or a non-cognitive model) is able to reveal
durations which match metrical structure from realistic musi-
cal examples. This then characterises the data and behaviour
of a top-down cognitive model which must interact with the
bottom-up process.

1 INTRODUCTION

How does a cognitive structure such as musical meter emerge
from exposure to — and consequently, perception of — tem-
poral structure? An ongoing debate continues about the de-
gree to which rhythmic grouping is determined from the sig-
nal (data-oriented approach) [13, 6], versus the contribution
that cognitive processing (mental model approach) [1] makes
to interpretation.

This issue becomes of prime concern when considering
how grouping structures develop in computational models.
Can they be learned from mere exposure, or is an explicit cog-
nitive process required to capture these structures from a se-
ries of musical examples? From another perspective, would a
suitably effective general machine learning algorithm be suf-
ficient to extract musical structure from the temporal struc-
ture of the musical training set? A more nuanced question

∗This research was realized in the context of the EmCAP (Emergent Cog-
nition through Active Perception) project funded by the European Commis-
sion (FP6-IST, contract 013123).

may posit where the divide between a top-down expectation
process and a bottom-up perceptual process lies.

This paper determines that dividing point by taking a non-
cognitive approach in evaluating an existing data set of mu-
sical rhythms using a representation and visualisation device,
the continuous wavelet transform. The data set consists of
inter-onset intervals (IOIs) taken from score representations,
together with the annotated bar (measure) and beat (quarter
note) periods. These periods were tested whether they were
present in a time-frequency representation of the rhythms.

The transform which produces a time-frequency represen-
tation of rhythm is described in the next section. The method
of evaluation and outcomes are described thereafter.

2 THE WAVELET TRANSFORM

Multiresolution representations of rhythm have been demon-
strated to reveal periodicities in the temporal structure of on-
sets [14, 8, 11, 9]. The continuous wavelet transform (CWT)
[5, 7] decomposes a time t varying signal s(t) onto scaled
and translated versions of a mother-wavelet g(t),

Wb,a =
1√
a

∫ ∞

−∞
s(τ) · ḡ(

τ − b

a
) dτ , a > 0, (1)

where ḡ(t) is the complex conjugate and a is the scale pa-
rameter, controlling the dilation of the window function, ef-
fectively stretching the window geometrically over time. The
translation parameter b centers the window in the time do-
main. The geometric scale gives the wavelet transform a
“zooming” capability over a logarithmic frequency range, such
that high frequencies are localised by the window over short
time scales, and low frequencies are localised over longer
time scales. The CWT indicated in Equation 1 is a scaled
and translated instance from a bank of an infinite number of
constant relative bandwidth (Q) filters. For a discrete imple-
mentation, a sufficient density of scales (a) or “voices” per
octave is required.

Morlet and Grossmann’s mother-wavelet [4] for g(t) is a
scaled complex Gabor function,

g(t) = e−t2/2 · ei2πω0t, (2)

where ω0 is the frequency of the mother-wavelet before it is
scaled. Choices of ω0 ≥ π

√
2/ ln 2 will be close to a zero



Figure 1. Plots of the magnitude and skeleton (with bar ridge
highlighted) of the scaleogram of the Tunisian national an-
them rhythm.

mean [5], ω0 = 6.2 in this application. The Gaussian enve-
lope over the complex exponential provides the best possible
simultaneous time/frequency localisation [4], respecting the
Heisenberg uncertainty relation. This ensures that all short
term periodicities contained in the rhythm will be captured in
the analysis. The time domain of s(t) which can influence
the wavelet output Wb0,a0 at the point b0, a0 is an inverted
logarithmic cone with its vertex at b0, a0, equally extending
bidirectionally in time. Where impulses fall within the time
extent of a point, Wb0,a0 will return a high energy value.

By the “progressive” nature of Equation 2 [4, 5], the real
and imaginary components of Wb,a are the Hilbert transform
of each other. These can be computed as magnitude and
phase components and then plotted on a “scaleogram” and
“phasogram” (upper plot of Figure 1) respectively. The in-
vertibility of the CWT, like the Fourier transform, allows con-
sidering the time-frequency domain as a visualisation of the
data analysed.

Combinations of the magnitude and phase components can
be reduced to time-frequency ridges which minimally de-
scribe the time varying frequency components in the signal,
known collectively as a skeleton [12, 9, 10] (lower plot of
Figure 1). When applied to musical rhythm, a ridge is an
oscillation at a rhythmic frequency, over a period of time,
incorporating rubato. Ridges function as beat periods of a
rhythm that are prominent and, for example, can serve as the
rate that listeners tap or otherwise attend to a musical rhythm.
For each rhythm, its skeleton then represents the entire set of
beat periods available to a listener to attend to.

3 METHOD

3.1 Anthem Rhythms

While a key benefit of the multiresolution representation of
rhythm is a unified representation of both expressive tim-
ing and score timing, evaluation in this paper only concerned
rhythms represented in score times, lacking expression, each
interval being an integer multiple of the minimum duration,
typically a 16th note (semi-quaver).

All rhythms were taken from the National Anthem Collec-
tion data-set, consisting of 105 rhythms, annotated with score
bar (measure) and beat (quarter note) periods [1]. Since these
rhythms were taken from scores, the rhythms were all scaled
to a single constant tempo of 120 BPM without expressive
timing. With a sampling rate of 200Hz, a quarter note was
therefore 100 samples (0.5 seconds). This tempo was chosen
to minimize the influence of tempo scaling on perception of
beat, since it falls close to spontaneous and maximally sensi-
tive rhythm rates [3].

The anthem rhythms ranged in length, and were limited to
a maximum of 16384 samples long to restrict the rhythm to a
dyadic length to minimize padding the signal and bound the
computation time. This translated to 81.92 seconds of perfor-
mance at 120 BPM with a 200Hz sampling rate, constituting
163 quarter note beats, sufficient to establish a regular group-
ing and also allow musically typical rhythmic variation. The
majority of rhythms were between 40.96 and 81.92 seconds
(8192 and 16384 samples) long.

Matching Zaanen’s method [15], reduced length rhythms
were also analysed, limited to 48 16th (semi-quaver) inter-
vals, comprising the first six seconds of the rhythm if played
at 120 BPM, 3 bars at 4

4 . This was done to determine if the
extended length of the rhythms were overly biasing the eval-
uation towards metrical periods, or conversely, if variation
over the rhythm was dissipating the spectral peaks.

3.2 Ridge Presence

The average ridge presence vector P̂ is the relative frequency
of occurrence of a ridge at each dilation scale a, averaged
across all rhythms J of a given meter

P̂ =
J−1∑
j=0

P

J
. (3)

The ridge presence vector P of a single rhythm is calculated
by summing ridge scales a across the rhythm and normalising
for the duration B of each rhythm

Pa =
B−1∑
b=0

r(Wb,a)
B

, (4)

where r() is the normalised ridge peak function, derived from
the magnitude maxima, local phase congruency and station-
ary phase measures of each wavelet coefficient Wb,a, described
in detail in [9, 10].

Since the mother-wavelet has a Gaussian profile, and due
to the practical limit of the number of voices per octave able
to be computed, a single dilation scale will not always per-
fectly match the period of a signal. For example, with 16
voices per octave, a scale of 106 will correspond to a sig-
nal period of 397 samples, the closest scale to a bar period
of 400 samples). Therefore the energy will be spread across
more than one adjacent scale. To account for this, when mea-
suring the presence of a particular period (for example, bar
and beat), the two scales immediately adjacent to the scale a



Figure 2. Mean frequency of occurrence of ridges in the
skeletons of anthem rhythms in 4

4 meter. The scales corre-
sponding to common note durations including the bar (semi-
breve) period are prominent.

closest to the period examined were also assessed as repre-
senting the period. This was computed by “or”ing the three
scales together:

Rb,a =
{

1 if r(Wb,a) + r(Wb,a−1) + r(Wb,a+1) > 0
0 otherwise.

(5)
In the examples tested, this represents an error of ±16

samples for the bar duration in 4
4 meter rhythms, less than the

minimum duration in the rhythms (a 16th note = 25 samples
duration). The measure of relative “presence” of the time-
frequency scale in the scaleogram was computed as:

p =
B−1∑
b=0

Rb,a

B
, (6)

where B is again the duration of the rhythm and it’s respec-
tive scaleogram. Thus p ranges from 0 (no ridge around a
anywhere in the scaleogram) to 1 (there is energy at every
sample along the scale a).

4 EVALUATION

4.1 Bar Presence

Figure 2 illustrates how well the time-frequency representa-
tion of different anthems expose the period of the notated bar.
The figure displays average relative frequency of occurrence
of ridges P̂ (Equation 3) for 4

4 meter, J = 77. Each dila-
tion scale a is displayed in musical units and the periods of
notes (16th, 8th, quarter notes) are apparent, as is the period
of the 4

4 bar, a whole note (semibreve). The bar period ap-
pears due to the decomposition of the temporal structure of
the IOIs into rhythmic frequency components.

The stability of the bar duration can be seen by consider-
ing how commonly it appears in the skeleton of each rhythm.

Figure 3. Proportion of bar (measure) periods present in the
skeletons of 105 anthem rhythms (long excerpts).

Short (6.0 sec) Long (81.92 sec)
Bar 0.667 (0.328) 0.528 (0.231)
Beat 0.795 (0.190) 0.763 (0.139)

Table 1. Average and standard deviation of the presence of
bar and beat periods in skeletons of the 105 anthem rhythms,
for short and long excerpts.

Figure 3 plots the relative presence of the bar duration, cal-
culated by Equation 6. The average and standard deviation
of this relative presence of the bar and the beat periods in the
skeletons of the anthems is summarised in Table 1. In con-
trast to the common occurrence of the bar duration in nearly
all of the skeletons, only 33 of the 105 anthem rhythms have
any occurrences of the bar duration IOI, demonstrating how
the decomposition of the CWT reveals the period of the bar.

While a multiresolution representation has been shown to
reveal frequency components matching the period of the bar,
which is typically the rate that listeners will group the rhythm,
the CWT alone is insufficient for a complete theory of per-
ception of rhythm. For example, there is currently no use of
rhythmic phase to identify an anacrusis (upbeat). Since the
anthem dataset is annotated with upbeats, a future task is to
develop and evaluate such an extension of the CWT model.

4.2 Case Studies

Given the lack of expressive timing and dynamic, harmonic
and melodic accents, it is surprising that such metrical peri-
ods are exposed as well as they are from the temporal struc-
ture alone. In most melodies, the melodic structure would
contribute to the metrical grouping structure, so some rhythms
which do not display a strong bar ridge are to be expected.

An example is the Greenland anthem which has no spec-
tral energy at the bar period (4

4 , 400 samples, 2.0 seconds).
However it does have prominent ridges at periods of the 16th,
8th, quarter, half notes, at 3 quarter notes and 5 quarter notes.



These last two periods arise since the anthem is a dotted eighth
and dotted quarter note rhythm and lacking disambiguation
by accenting, the common repetition of these durations de-
composes onto frequency components of 12 and 20 16ths.

At the other extreme, the Tunisian anthem rhythm has a
well defined continuous ridge at the bar duration of 400 sam-
ples (2 seconds) as shown in Figure 1. This rhythm is also
a dotted rhythm, however it more regularly repeats a dotted
rhythmic figure that has a period that matches the bar du-
ration. The Greenland rhythm has several longer intervals,
which leads the decomposition of that rhythm to favour the
periods of 3 and 5 quarter notes, whereas the Tunisian rhythm
decomposes more parsimoniously into 4 quarter notes. The
variation in timing across the duration of each anthem pro-
duces the range of bar presence measures as reflected in the
standard deviation measures in Table 1.

5 CONCLUSION

This paper has evaluated the continuous wavelet transform
as a multiresolution representation of musical rhythm [8, 9,
11, 10] against a known dataset. With the decomposition of
the rhythm into time-varying frequency components, periods
which match intervals of the beat and bar are revealed.

The presence of metrical durations, revealed to be fre-
quency components of the temporal structure of a rhythm,
suggests that they might function as cues for meter in an
emerging cognitive construct created by active perception.
This suggests a sufficiently discriminating bottom-up percep-
tive mechanism can, potentially, provide features (i.e. ridges)
that are then statistically clustered into cognitive features (the
current metrical interpretation). That metrical features can
appear from signal representations, such as the CWT decom-
position, demonstrates this information can be derived from
the data itself without an explicit model of rhythmic cogni-
tion.

Of course, a bottom-up approach alone does not account
for all processes that are required for the perception of meter
and rhythm. An additional cognitive model or top-down pro-
cess is essential in, for example, the disambiguation of the
metrical alternatives present in the signal, the identification
of ridges which match against cognitive features such as the
tactus (the metrical level that is most salient), and perpetua-
tion of a metrical interpretation in the face of syncopation or
other contradictory evidence from performed events.

This then suggests that a top down process would function
by evaluating the candidate ridges (evidence of time vary-
ing rhythmic periodicities) and selectively use a subset at any
given time to form an attending strategy. The simplest ex-
ample strategy is choosing a single ridge that can be clapped
to [9, 10]. This selection process need not be exclusionary,
enabling several competing candidates to be continuously as-
sessed according to their fit within existing mental schemas
and perceptual and performance bounds. It is likely that the
bottom-up process is not only ridge formation, but is medi-
ated by a categorisation process which then interacts sequen-
tially with a top-down meter induction process [2, Fig. 3].

A future research task is to compare the performance of
human listeners in selecting tactus periods to the decomposi-
tion behaviour that the CWT produces and to the bar as no-
tated. Testing on larger, richer datasets that includes tempi,
melodic information and compound metrical rhythms is also
a future research task.
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