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Abstract
What makes a rhythm interesting, or even exciting to lis-

teners? While in the literature a wide range of definitions
of syncopation exists, few allow for a precise formalization.
An exception is Longuet-Higgins and Lee (1984), that pro-
poses a formal definition of syncopation. Interestingly, this
model has never been challenged or empirically validated.
In this paper the predictions made by this model, along with
alternative definitions of metric salience, are compared to ex-
isting empirical data consisting of listener ratings on rhyth-
mic complexity. While correlated, noticable outliers suggest
processes in addition to syncopation contribute to listeners
judgements of complexity.

1 Musical Surprise
The experience of surprise in listening to music can be

considered as a necessary, although not sufficient, inverse in-
dicator of the listeners expectation. In addition to confound-
ing expectations from pitch and harmony, surprise arises tem-
porally, contributed notably by metrical salience, the pres-
ence and role of an anacrusis, expressive timing (for example
tempo rubato and asynchrony), and syncopation. The musical
concept of syncopation is well known to most performers of
Western music, regularly used by composers and commonly
taught in music education.

Recently, there has been significant research in musical
expectancy, using formal models (see Smith, 1999, for a re-
view). As distinguished by Bharucha (1993, pp. 498), musi-
cal expectation can be schematic — abstract knowledge de-
rived over time and many examples — or veridical, derived
from the implications of the particular musical events attended
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to during a performance. The skillful interplay between ex-
pected and surprising events is critical to the generation of
musical expression (Meyer, 1956). Robust and explicit man-
agement of expectation and of surprise has a computational
value also, to enable artificial performers or tools to fail as
gracefully as humans do, both when accompanying or inter-
preting human performers and in the feedback loop evaluat-
ing these systems performance of some hardware or software
instrument.

The approach of connectionist recurrent networks
(Bharucha and Todd, 1991) and hidden Markov models (HMM)
is to encode the weight of tendency to transition from one
note to the next given previous history. These approaches
learn expected transitions by training with musical examples.
A key issue with these artificial systems is their degree of
explanatory function in cognitive and musicological terms,
otherwise the explanation can only be by examining and in-
terpreting the weights located in the HMM matrix or neural
net connection strengths. This casts the notion of surprise
only in terms of transitions of notes. Such systems do not
seem to adequately account for schematic expectancy: How
does a learning algorithm resolve a veridically surprising yet
schematically expected event? Will training these systems on
sufficiently large sets of examples properly create schematic
learning, or lead to over-fitting to training sets? We therefore
first investigate formal rule-based, symbolic models.

2 Syncopation
There are few examples of formal representation of syn-

copation. An exception is Longuet-Higgins and Lee (1984)
(LH&L), that assumes the listener will attempt to interpret a
rhythm according to a given meter so as to minimize synco-
pations. Syncopation is consequently defined by them as a
beat stronger than the previous sounded note falling on a rest
or tied note (see Figure 1). A syncopation occurs if and only
if a (sounded) note outlasts the highest-level metrical unit it
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Figure 1: LH&L syncopation measure calculated from a theoretical
metric salience tree (top diagram). Syncopation is calculated as the
difference between the initiating metrical unit of the rest (R) and it’s
preceding sounding note (N ).

initiates. Metrical units are defined in a hierarchy identical to
Lerdahl and Jackendoff’s (1983) metrical hierarchy, although
inverse in polarity. Meters in the LH&L model are specified
in terms of a vector of rhythmic subdivisions M , for example
6
8 is represented by (2 3), subdividing the measure into two
parts, and then each of those into three.

Palmer and Krumhansl (1990) argue that pre-established
mental frameworks (“schemas”) for meter are used during lis-
tening. These schemas enable robust interpretation despite
sometimes contradicting, ambiguous or absent objective cues.
They hypothesize that “Strong statistical regularities for me-
ter may allow emphasis of other musical dimensions such as
pitch or intensity by reducing the attention listeners must allo-
cate to meter and increasing listeners anticipations for certain
event locations” (Palmer and Krumhansl, 1990, pp. 733).

In this study they tested the types of mental structures for
meter (“perceptual hierarchies”) evoked from simple event
sequences. Listeners rated the relative acceptability of au-
dible events at different locations in the metrical grid (Palmer
and Krumhansl, 1990, Experiment 2). They found a signif-
icant difference in performance between musicians and non-
musicians, arguing that musicians hold more resilient repre-
sentations of meter, which favours hierarchical subdivision of
the measure, than the non-musicians. These two ratings can
be interpreted as an alternative to the LH&L metric saliences
(SLH&L), referred here as SP&K−M and SP&K−NM , and de-
rived in Section 3.

3 Method
To aid comparison against multiple examples and mod-

els, the LH&L measure of syncopation was implemented in
Common Lisp. This allows for the substitution of alternative
measures of metrical salience. To substitute the P&K met-
ric salience measures for the LH&L hierarchies required the
following additions to the model:

1. The appropriate metrical hierarchy vector H must be
selected based on the lookup of a dictionary contain-
ing perceptual hierarchies keyed by a “canonical” me-
ter (fully specified to a maximum number of 12 or 16
time subdivisions) and subject expertise (musician vs.
non-musician). Incompletely specified meters are first
compared to the minimum prefix of the canonical ver-
sions. The matched canonical version then is used to
index the 12 or 16 element vector H .

2. The P&K perceptual hierarchies must be scaled down
to match the LH&L metrical hierarchy polarity and mag-
nitude:

S =
[

H −min(H)
max(H)−min(H)

− 1
]
∗ d (1)

where S is the metrical salience vector produced
(SP&K−M or SP&K−NM ), H is the perceptual hierar-
chy vector, d is the depth of the metrical hierarchy, that
is, the number of subdivisions of the meter, being the
length of the meter divisor list M .

3. Select every nth item of the retrieved and scaled per-
ceptual hierarchy to match the meter specification, where

n =
len(H)∏

M
. (2)

For example M = (2 2 2) matches against the canonical
meter of (2 2 2 2). This selects the 4

4 meter perceptual hier-
archy H . Meter (2 2 2) selects 8 of the originally recorded
hierarchy of 16 ratings, every second rating.

The model is applied by

NR = syncopate(S, M, R) (3)

where S is the metrical salience, either determined by
LH&L’s original metrical salience algorithm, or Equation 1
for P&K’s model, M is the meter divisor list, R is the test
rhythm. The Longuet-Higgins and Lee syncopate() function
produces a vector of syncopations nx ∈ NR, where-ever in
the rhythm R a syncopation occurs. In order to compute a
single syncopation measure for the entire rhythm, the synco-
pation measures were simply summed:



σR =
len(NR)∑

x=0

nx. (4)

This models the assumption that the entire experience of syn-
copation is created by it’s contributing occurrences within the
rhythm.

3.1 Evaluation of Metric Salience Measures
Three alternative measures of metric salience were tested.

The first SLH&L, being the original metric salience, and two
alternatives described from P&K, SP&K−M and SP&K−NM .
The predictions made by these three versions of the model
were tested against a set of 35 rhythms that were judged for
complexity on a scale of 1 to 5 (least to most complex, Shmule-
vich and Povel, 2000). Since all of the rated rhythms were
16 elements in length, the 4

4 and 2
4 perceptual hierarchies

of Palmer and Krumhansl were tested. In order to compare
these results, the output from LH&L and P&K models were
linearly scaled to match the listener ratings of complexity.

4 Results
The comparison of the models to Shmulevich and Povel’s

listener ratings are shown in Figure 3 and Figure 4 and the
models are compared in Figure 2. The P&K 4

4 demonstrated
better correlation with the listener ratings, and the stimulus
from which that metric salience was derived better matched
the inter-onset intervals of the listener ratings than 2

4 , so only
the 4

4 hierarchy is plotted in the figures.
The predictions made by the LH&L and P&K musician

models positively correlate to the Shmulevich and Povel lis-
tener ratings (r = 0.75 and r = 0.73 respectively, both
p < 0.001 (Press et al., 2002, pp. 641)).

The root mean square error (RMSE) goodness-of-fit be-
tween each prediction and the listener ratings were also sim-
ilar (LH&L 0.75, P&K musician 0.76, lower values indicates
greater goodness-of-fit). However, even if a high goodness-
of-fit on one model had been achieved using RMSE, or per-
centage of variance accounted for (PVAF) measures, these
alone are insufficient to select a model, since a good fit may
actually indicate over-fitting. Such measures are unable to
distinguish between variations in the data caused by noise,
and those that the model is designed to capture (Honing, 2006).

Correlation of the P&K non-musician model to the lis-
tener ratings was less than the P&K musician model (r =
0.64, p < 0.001). This difference between correlation mea-
sures of the P&K non-musician model and the LH&L model
could not be determined to be statistically significant, even

Figure 2: Comparison of the predictions of the models based on
the metric saliences SLH&L, SP&K−M and SP&K−NM . The per-
formance of models are compared using Shmulevich and Povel’s 35
example rhythms. The predictions of the models have been scaled to
match the listener ratings on a scale of 1–5 (least to most complex).

assuming binormality between the sets (Press et al., 2002, pp.
642).

The tests highlight two categories of rhythms of inter-
est, those that agree between model predictions, but differ
between models and observed data, and those that differed
between model predictions. Examples of both are rhythms 51

and 62 which were rated by listeners as marginally complex
(2.08, 2.12 respectively), yet in the classical LH&L model,
and both musician and non-musician P&K models, there is
no syncopation anywhere in the measure. Rhythm 18,3 rated
moderately complex by listeners (2.84) produced the maxi-
mum syncopation measures for LH&L and P&K musician,
and a substantial measure for the P&K non-musician. This
is possibly from listeners interpreting the rhythm as a com-
pound rather than syncopated hierarchical meter. Conversely,
rhythm 244 produced low but differing syncopation predic-
tions for LH&L and P&K musician models, and a high syn-
copation measure for P&K non-musician model.

Such variation indicates how critical the metrical saliences
are to the performance of the models. Therefore using dif-
ferent saliences at specific metrical positions should produce
a better estimate of perceived complexity. However, using
SP&K−M and SP&K−NM did not produce better results, the
performance using SP&K−M was actually slightly less than

1Rhythm from Shmulevich and Povel (2000): |.|||.|||..||...|
2|||.|.|||..||...|
3||||.|.|..|||...|
4|||..||.|||.|...|



Figure 3: Comparison of the LH&L model to listener ratings.

using SLH&L(although the difference is statistically insignif-
icant). This could be due to the scaling of the P&K percep-
tual hierarchies reducing the magnitude of the syncopation
measures such that there was not enough difference from the
SLH&Lto produce significantly different predictions. Alter-
natively, the explanation may be that the lack of an overt met-
rical context in the listener ratings (Shmulevich and Povel,
2000) leads to disagreement with the judgements producing
Palmer and Krumhansl’s metric salience measures. The as-
sumption that syncopations at different locations within the
musical measure can be combined to a single value of synco-
pation may also be simplistic.

5 Conclusions
This preliminary work has implemented and tested LH&L’s

syncopation model against empirical data. This algorithm
has been demonstrated to be applicable to alternative met-
rical salience parameterisation. This has allowed testing of
P&K’s perceptual hierarchy results and provides scope to test
other alternative metrical salience measures and their gener-
ating models. Future work is to test the performance of the
models against non-duple meter empirical data such as that
reported by Essens (1995), and to incorporate the role of ab-
solute tempo in the predictions (Handel, 1993).
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