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Abstract

Pitch-tracking has been an important topic of research in speech and music research. Several methods have
been proposed to obtain reliable f0 trajectories from harmonic signals. The paper will review these. Some
issues that are left are: how to evaluate and improve the quality and reliability of the pitch-tracking, and how
to realize this in an automated method that can be use reliably and systematically on large data sets. In order
to address these issues, we will focus on an approach that takes advantage of the availability of knowledge in
trying to obtain more reliable and precise f0 trajectories from monophonic and harmonic audio fragments.
Two methods are compared that obtain reliable and precise f0 trajectories from monophonic audio fragments.
These trajectories can be used for the analysis and modeling of vibrato (frequency modulation) in music
performance. The pitch extraction methods take advantage of the fact that the score, the timing (the
performers synchronized with a piano accompaniment), the instrument and sometimes even the fingering is
known.

1. Introduction

1.1 Fundamental frequency extraction
Robust systems that retrieve pitch information from
musical performances are still hard to design. A very
large number of methods have been developed (see
for instance Hess 1983). We can classify pitch
trackers into five general categories: autocorrelation,
adaptive filter, time domain, frequency domain and
models of the human ears (see Roads 1996).
Consider firstly the autocorrelation algorithms
(Moorer 1975). These methods are most efficient at
mid to low frequencies. In musical applications, the
pitch range is broader.
Considering the adaptive filter methods (see Lane
1990), on pitch detector is based on the analysis of the
difference between the filter output and the filter
input. This difference must be close to zero. The band-
pass filter center frequency is controlled by this
difference. Another adaptive filter is based on the
optimum comb method (Lane 1990). The goal is to
minimize the output signal.
Considering the time domain methods, one type of
pitch detector is based of the analysis of the zero-
crossing points (Moorer 1975, Hermes 1992).
Preprocessing by filters has to be performed, in order
to solve the problem of the low-amplitude zero-
crossings caused by high-frequency components.
A few pitch detectors exist in the frequency domain.
Most of them are based on the analysis of the FFT

spectrum, or of the cepstrum (Schafer and Rabiner
1970).
The methods based on auditory models combine
frequency and temporal methods.
Most of the efforts have taken place in the frequency
domain (see Brown 1992). In this paper we present
methods working in the temporal and in the frequency
domains (the FFT in the frequency domain; the
Analytic Signal and the Teager-Kaiser methods in the
temporal domain). It is shown that the frequency
domain method is more efficient.
In order to obtain precise frequency trajectories, we
must use local strategies, that is to say we have to use
relatively short frames length. However, using the
FFT spectrum, we must use frames which length have
to be at least three times the period of the signal we
want to detect. For a sine with a frequency of 440 Hz
the frames length must be around 7 ms. That is to say,
if the sampling rate is 11 kHz, 75 samples. Some
alternatives to the FFT have been proposed in the
literature. One of them is based on the Analytic Signal
(Hess, 1983; Boashash, 1992; Wang, 1994). Another
one is based on the Teager-Kaiser energy algorithm
(Maragos, 1993; Vakman, 1996). For the first one
only two samples are needed to estimate the
instantaneous frequency and the instantaneous
amplitude of a signal. For the second one, four
samples are needed. But, for both of them, the signal
is assumed a pure sine, which frequency and
amplitude vary slowly in time. As the musical sounds
in use are composed (i.e. composed of a sum a
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harmonic sines) sounds, it is necessary to isolate each
harmonic by band-pass filtering.
In our case, the score of the music is known and can
be used as a guide. The pitch trackers described in this
article are therefore referred to as knowledge-based
pitch trackers.
A pitch tracker using knowledge is described in
Scheirer (1995). One of the goals of the work
presented in this article is to solve the problem of the
transcription of polyphonic sounds. It is a score-aided
transcription system. A comb-filter strategy, that is to
say a not local strategy, is used. In this article,
Scheirer says: �It seems on the surface that using the
score to aid transcription is �cheating�, or worse,
useless - what good is it to build a system which
extracts information you already know?�. In our case,
as the amplitude of the frequency modulation is
assumed to be great, the score does not follow the
frequency trajectory. The score-based pitch tracking is
very useful to solve our specific problem.

1.2 Current Research
Pitch-tracking has been an important topic of research
in speech and music research. Several methods have
been proposed to obtain reliable f0-trajectories from
harmonic signals. The paper will review these. Some
issues that are left are: how to evaluate and improve
the quality and reliability of the pitch-tracking, and
how to realize this in an automated method that can be
use reliably and systematically on large data sets.
To address these issues, we will focus on an approach
that takes advantage of the availability of knowledge
in trying to obtain more reliable and precise f0-
trajectories from monophonic and harmonic audio
fragments. It is a hard problem, especially, for
instance, when sympathetic resonance of open strings
in string instrument interfere with some harmonics of
the main sound, or when transitions are so fast that
tracks of different harmonics are connected. We will
show that knowledge about the instrument and music
played can be used to improve the results of the
presented methods.
These methods are developed in the context of a larger
project on the analysis and modeling of vibrato in
music performance (Desain and Honing 1996;
Timmers and Desain 2000). In order to model the
vibrato during notes and in note transitions accurate
f0-trajectories are needed. For this a large systematic
set of music performances was collected (see section
1.3). The setup of the data collection provides two
kinds of knowledge. Firstly, �score� information is
used such as pitch information and the predicted onset
times, using the known tempo, is used (the latter
makes it different from a score, hence the inverted
comma�s). f0

s is used for instance to fit the length of

the frames used for the band-pass filtering and for the
fn extraction (see Figures 2 and 4). During the data
fusion stage, knowledge about the instrument can be
used, like its spectral characteristics. Since sometimes
a frequency trajectory is too noisy to be used, caused
by, for example, a missing harmonic (e.g., in wind
instruments) or sympathetic resonance (e.g., in string
instruments).
We will examine here two alternative pitch extraction
methods. Both are made-up of three stages. In the first
stage, for both methods, the audio signal is fed
through a band-pass filter bank. For each of the first N
harmonics a time-varying band-pass filter is used
which adjusts its length and central frequency
according to the frequency information in the score,
f0

s. Information from the instrument is used to adjust
the bandwidth to the pitch and to the speed of
transitions. Thus, each harmonic is isolated, and N
new sounds signals are obtained. The two following
stages are not the same for the two methods.
Considering the first method, in the second stage the
frequency and energy trajectories are computed for
each harmonic (peak tracking), using the signals
obtained in the previous stage. In the final stage the fi

and amplitude trajectories obtained are merged to
provide the optimal f0 trajectory. Considering the
other method, in the second stage, portions of the
spectrum, centered on the frequency given by the
score, are merged. In the third stage, the peak tracking
is performed. During the data fusion stage, for both
methods, instrument information is used to decide on
the correct interpretation in situations where a higher
harmonic is known to be a louder or more reliable
source of f0 information than the fundamental itself, or
where the tracks of certain harmonics of certain
fundamental frequencies are known to be distorted by
sympathetic resonance. For the second method
automatic techniques to detect the bad tracks have
been implemented.
Next, we will describe the dataset that was used in the
analyses, followed by the two pitch extraction
methods (sections 2 and 3), completed by an
evaluation and discussion of the results obtained
(sections 4 and 5).

1.3 Data set of music performances
The dataset used in this paper consists of a large and
systematically collected set of music performances of
a single fragment of music performances by a variety
of instruments. The fragment consists of the twenty
first notes of �The Swan� of C. Saint-Saëns,
performed along with a MIDI-controlled grand piano.
This was used to control for the desired tempo, and as
such allows for studying, for example, how vibrato is
adapted to note duration. Seven instruments (cello,
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oboe, tenor, theremin, violin, soprano, and
shakuhachi) played the melody in ten different tempos
(54.5, 55.8, 57.1, 58.5, 60.0, 61.5, 63.2, 64.9, 66.7 and
68.8 beats per minute). And each performance was
repeated six times to be able to check for consistency
in performance. All this results in 420 recordings of
which the f0 trajectories had to be obtained. See
Desain, Honing, Aarts and Timmers (2000) for more
details.
An example is given Figure 1. The spectrogram, the
score information in use (melody contours in straight
lines) and the obtained frequency trajectories are
shown.

Figure 1: spectrogram, selection of bands using score
information (melody contour in straight lines) and frequency

trajectories obtained therein, for the cello (54.5 bpm)

2. Pitch-tracker A (fusion after peak
detection)

2.1 Architecture
The analysis of f0 from audio signals is composed of
three stages. Firstly, the original audio signal is band-
pass filtered. Thus, each harmonic is isolated (section
2.2), and N new sounds are obtained. Secondly, the
frequency and the energy trajectories are computed for
each harmonic, using the signals obtained at the
previous stage of the analysis (section 2.3). Three
methods to obtain these trajectories have been tested,
with FFT as the preferred method. Thirdly, the fn and
An trajectories are mixed in order to provide the
optimal f0 trajectory (section 2.4).

Figure 2. Architecture of pitch-tracker with fusion after peak
detection

2.2 Filtering (phase 1)
In the first phase the appropriate harmonic needs to be
selected. This is input for the fN extraction phase.
After this time-varying band-pass filtering, the
amplitude of the harmonic we want to keep must be
higher than the amplitude of all the other harmonics.
Furthermore, the isolated harmonics are used for
checking the quality and appropriate selection
controlled by the score information (see section 4.3).

2.3 fn extraction (phase 2)
Three harmonic trackers have been tested. The input
signal considered for each of them is the sound
obtained after the band-pass filtering. The results
obtained with each of them for a simulated signal and
for a true sound signal are shown in section 4. It is
shown there why the last two methods have been
rejected. The first method is based on the FFT
spectrum (FFT method); the second one is based on
the Analytic Signal (AS method): for more complete
theoretical developments, examine the references
Hess 1983, Boashash 1992, and Wang 1994; and the
third one is based on the Teager-Kaiser energy
algorithm (TK method): Maragos 1993 and Vakman
1996. These three algorithms are shown Figure 3.
The FFT method is a �frequency� domain strategy;
and AS and TK methods are �temporal� domain
strategies.
The results obtained with each of them for simulated
signals are shown and compared in section 4.1.

Figure 3: The three alternative harmonic trackers
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For the FFT method, the f0
s knowledge is used to

determine the length of the frames, which is equal to
M fe/f0

s samples (with M  ε  [3 10]). As the analysed
sounds are cut into frames, this method is considered a
�global strategy�. But, as the length of the frames
changes with f0

s and as such provides us with an
optimal size, knowledge allows us to improve the
results.
For the AS method, the f0

s knowledge is used to
determine the length of the frames, which is equal to
M fe/f0

s samples (with M ε  [3 10]). Due to the Hilbert
filtering, we say that this method is �global�. But to
compute the �instantaneous frequency� only two
complex samples are needed.
Considering the TK method, the instantaneous
frequency is estimated as:

F
P x n x n

P x n
= − − −

arccos(
[ ( ) ( )]

[ ( )]
)1

1
2

 (1)

where:
P y m y m y m y m[ ( )] ( ) ( ) ( )= − − +2 1 1 (2)

is the Teager-Kaiser operator; and where x are the
sound samples.
A similar formula is available in order to estimate the
instantaneous amplitude:

A
P x n

F
=

−
[ ( )]
cos ( )1 2

(3)

Knowledge is not used here.
As only four consecutive sound samples are needed to
obtain an estimate of the frequency and of the
amplitude, the TK method is considered a �local
strategy�. It is assumed that �the amplitude and the
frequency do not vary too fast (time rate of change of
value) or too greatly (range of value) in time
compared to the carrier frequency� (Maragos and
Kaiser 1993). These two conditions are related to the
vibrato: the first one, to its frequency fv (or vibrato
rate), and the second one to its amplitude Av (or
vibrato extent). And the transitions have to be also
relatively smooth.

2.4 Data fusion (phase 3)
The definition used is:
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where N  is the number of harmonics taken into
account, fi is the frequency found for the ith harmonic,
and Ai is the amplitude of the ith  harmonic.
It can be noticed that for this first method, no
information is coming from the box �Instrument� (see
Figure 2).
A more refined method can be used:
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where Wi are the weights (information coming from
the box �Instrument�). And where the parameters si

describe the fact that for some instruments (e.g. string
instruments) the harmonic are a little bit shifted in
frequency. At the moment, the weights W i a r e
predefined. Some automatic methods have been
studied. They are based on the results of a rating
experiment in which listeners compared original and
re-synthesized sound signals (see section 3.3 and 4.3).

3 Pitch-tracker B (fusion before
peak detection)

3.1 Architecture
For the alternative pitch-tracker the analysis is also
composed of three stages. The first stage is the same
for both pitch-trackers. Secondly (section 3.2)
portions of spectrum are extracted. Thirdly, these
portions are merged, and the peak tracking performed.
The weights Wi described in the section 2.4 can be
taken into account. They weight the amplitude of the
extracted portions of spectrums. In the other hand, a
technique to automatically detect the bad notes has
been implemented. Thus, the data fusion stage is
completed by the automatic detection of bad tracks
(section 3.3).

Figure 4: The whole system when the fusion is performed
before the peak detection.

3.2 Spectra extraction (phase 2)
In the second stage transposed portions of the
spectrum are combined. These portions correspond
respectively to these frequency bands:

[ ]
0 0

f ff f− +∆ ∆ (6)

for the first harmonic, and

[ ]
0 0

2 22 2f ff f− +∆ ∆ (7)

for the second harmonic, etc. The bounds of each band
correspond to the information given in the score. The
bandwidth increases with the number of the
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considered harmonic. So, the width of the main lobe
decreases with the number of the harmonic.

3.3 Data fusion with automatic detection
of bad tracks (phase 3)
In the pitch-tracker discussed above weights were
used (that had to be explicitly provided) to improve
the quality of the data fusion. In this pitch tracker we
incorporate an automatic method to rate the quality of
the fn�s.
We analyze here the extracted portions of the
spectrums, frame by frame. We inspect three
measures.
The first one, M1, is the ratio between the portion of
energy around the maximum of the spectrum
([ ]

max max
f ff f− +δ δ ) and its whole energy. This portion

is expected to be great when the analysed signal is a
pure sine and when the score information is relevant.
The second one M2 is the rate of change in the
position of this maximum for two successive frames.
When something disrupts the partial tracker, this rate
is expected to be great.
The third one M 3 is the correlation between the
spectrum around is maximum and its theoretical shape
if the analyzed signal was a pure sine, witch constant
amplitude and frequency.
The final measure of bad tracks detection is thus:

Mi = a1 M1  + a2 (1- M2) + a3 M3 (8)
The parameters a1, a2, a3  and δf  have to be optimized.
This variable M is used instead of the Wi. Therefore, a
value is obtained for each frame. It is not the case
when the weights W i are considered, which are
defined note by note.

4. Results
Firstly, the performance of the three harmonics
trackers is discussed. Secondly, the two whole pitch
tracker systems are compared. Thirdly, the
performance of the technique to automatically detect
the bad tracks is analyzed. And fourthly, the
performance of the whole system, using the second
pitch-tracker, is shown.

4.1 Performance of the three harmonic
trackers

4.1.1 Introduction
Four characteristics of the signal complicate the
harmonic tracking. The first one is the vibrato
(frequency and amplitude); the second one are
transitions; the third one are neighboring harmonics;
and the last one is the additive noise. The three
methods do not behave in the same way at all. We

showed these differences considering a simulated
signal.
Three tests on a simulated signal have been
performed. The parameters for this signal are equal to:
fundamental frequency of the first note f0

(a) = 440 Hz,
fundamental frequency of the second note f0

(b) = 493
Hz, transition moment ta = 0.71 s, transition speed tr =
0.003, magnitude of the vibrato Av = 30 Hz, frequency
of the vibrato fv = 5 Hz and phase of the vibrato 

v
ϕ  =

1.6 radian.
The transition is modeled as a hyperbolic tangent.
Thus, the used model of the fundamental frequency
trajectory (without vibrato) is:
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2
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So, finally, the signal model in use is: s a= +cos( )( )

1Φ Φ
with:

1 0
2 2Φ ΦΠ Π= + + + +

−
− −{ sin( ) [ (cosh( )) (cosh( ))]}

( ) log loga v

v
v v r e

a

r
e

a

r

f A
f f t t

t
t
t

t ct t t
t

(10)
where  t is the time (in second), 

c

b af f
=

−
0 0

2

( ) ( )

, and ( )aΦ
the phase at t=0.
It can be noticed that, for these tests, the disruptive
parameters 1 and 2 concern the time rate of change of
value and the range of value (see section 2.3). The
length of the frames is constant. It has been chosen
equal to 7 ms, which is close to 3 fe /f0

s for the smallest
fundamental frequency, f0

(a).

4.1.2 Behavior on sine signal with a transition and
vibrato
In Figure 5 are shown the f0 trajectories obtained for
the whole sound. In Figure 6 are shown the f0

trajectories during the transition. In both cases, four f0

trajectories are plotted: the ideal f0 trajectory, the f0

trajectories obtained using the FFT method, the AS
method and the TK method. It can be seen that the
three harmonic trackers can follow the variation of the
frequency well. However, the TK method shows some
artefacts during the transition.
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Figure 5: Results obtained with the three methods (frame
length 7 ms)
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Figure 6: Close up of the transition shown in Figure 5

In Figure 7, are shown the results obtained when the
length of the frames is fixed to 25 ms. This value is
the value commonly used by the pitch trackers which
do not use knowledge (see Brown and Puckette 1993).
It can be demonstrated that, in the transition,  the FFT
method is less efficient when using a larger frame
length.
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Figure 7: Results obtained with the three methods (frames
length 25 ms)

4.1.3 Behavior with non-pure sine signals
In this case, the simulated signal is equal to:

s ii

i

i
a= + + +

=
∑cos( ) cos( )( ) ( )

1

1

1
2

4

Φ Φ Φ Φ
(11)

It means that the higher harmonics are not completely
removed. Their amplitudes are indicated by the
parameter ai. The results are shown in Figure 8.
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Figure 8: Behavior with non-pure sine signals.
a2=a3=a4=0.001 (top), a2=a3=a4=0.003 (bottom)

It can be seen that when the other harmonics are not
removed well, the behavior of AS and TK methods is
disturbed.

4.1.4 Behavior on noisy signals
In this case, the simulated signal is equal to:

s b= + +cos( )( )

1

1Φ Φ (12)

where b is a normal noise, with mean equal to 0 and
standard deviation equal σ . The results are shown in
Figure 9.
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Figure 9: Behavior on noisy signals. σ = −1 5e , σ = −3 4e

Where there is noise, the AS and TK methods do not
perform well.

4.1.5 Behavior of the FFT method
The goal is to show that the band-pass filtering is also
necessary for the FFT based method.
We have to notice that the speed of a given transition
increases with the number of the harmonic. For
instance, let us consider two consecutive notes which
fundamental frequencies are respectively 440 Hz and
554.36 Hz, and which are connected by a 50
milliseconds transition. For the first harmonic, during
these 50 milliseconds, the jump in frequency is about
114 Hz; and for the fourth harmonic, it is 457 Hz. It is
shown in Figures 6 and 7 that to adapt the length of
the frames to the frequency allows the FFT based
method to follow efficiently the frequency during the
transitions.
These results are shown in Figures 10 and 11. The
signal used is a simulated one. The model is described
in the section 4.1.1. The amplitude of each harmonic
is 1. The sound lasts 1 second. And we have: ta = 0.5,
tr = 0.012, 

v radΦ = 0 9. , f0
(a) = 440 Hz and f0

(b) = 554.36

Hz.

0.355 0.36 0.365 0.37 0.375 0.38 0.385 0.39
457

457.5

458

458.5

459

459.5

460

460.5

time (s)

fr
eq

ue
nc

y 
(H

z)

Ideal
Filtering
No filtering

Figure 10: zoom of the f0 trajectory (true trajectory,
trajectory obtained with the pitch-tracker A, trajectory when

the band-pass filtering is not performed)
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Figure 11: Relative difference between the true f0 trajectory
and the trajectory obtained with the pitch-tracker A and the

trajectory when the band-pass filtering is not performed

4.1.6 Behavior of the three harmonic trackers on
true sound signal
The top panel of Figure 12, shows the f0 trajectories
obtained for the first harmonic of the last note of the
cello. As expected, the trajectory obtained with the AS
is noisier than the result of FFT method, and the
trajectory of the TK method even more. This is due to
the fact that the analysed signal is not a pure sine (see
the spectra shown in the bottom panel of Figure 12).
After the band-pass filtering, the amplitude of the
higher harmonics are respectively [7.0 8.6e-3 7.2e-3
1.2e-2]. The AS and TK methods need signals
composed of a very dominant sine.
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Figure12. Top panel: f0 trajectories obtained with the three
harmonic trackers. Cello (54.5 bpm, last note, first

harmonic). Bottom panel: spectra of a frame of the original
signal [21.9s 21.92s] and of the corresponding band-pass

filtered signal

4.1.7 Discussion
A very efficient band-pass filtering stage is absolutely
necessary for the AS and TK methods. For these two
methods, the signal given to the harmonic trackers
must be a pure sine with slowly varying amplitude
and frequency. The FFT method seems to be the best,
as the use of knowledge allows us to improve its
performance. We decided therefore to use this method
in our system.

4.2 Comparison of the two pitch trackers

4.2.1 Simulated signal
Here we give some results obtained for the evaluation
of the two pitch tracker methods. The difference
between these two methods concerns mainly the data
fusion stage.
We use a simulated signal, composed of an harmonic
component and of a disruptive component.
For the harmonic component, the fundamental
frequency is constant (it means that there is only one
note): f0 = 440 Hz; there is a vibrato: fv = 5 Hz, Av =
20 Hz; and the amplitude of each harmonic is 1/15.
The disruptive component is composed of an
additional partial, which is close in frequency from the
third harmonic.
For the disruptive partial, the frequency is 3f0 + 150
Hz; the amplitude is 1.5/15 (notice that the amplitude
of the disruptive partial is higher that the amplitude of
the third harmonic) and there is a vibrato: fv = 4.9 Hz,
Av = 29.4 Hz (it is different of the vibrato presents on
the harmonics).
Figure 13 shows the fundamental frequency
trajectories for pitch-tracker A and B.
Here, clearly, the trajectory obtained using the
alternative fusion method (i.e. pitch tracker B) is

closer from the true trajectory than the one obtained
using the first fusion method (i.e. pitch tracker A).
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Figure 13: f0 trajectories obtained with the two pitch
trackers on a simulated signal

Next, we will look at the method of combining spectra
method uses in pitch-tracker B on the simulated
signal. This is illustrated in Figure 14. In this Figure,
the spectra of each harmonic of the simulated signal
are shown (indicated by S1, S2, S3 and S4).
It can be seen that the maximum for the third  (labeled
3) spectrum does not occur in the same place ( ≈ 30)
that for the 3 other spectrums ( ≈ 15).
We have also a trajectory labeled mean. It is the result
of the fusion the four previous spectrums. It can be
seen that the position of the maximum of this red
spectrum is around 15. So, it is well positioned.
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Figure 14: The spectra of the four harmonics in the
simulated signal; and the combined spectra (X-axis: ≈

frequency (not in Hz); Y-axis: linear amplitude)

The second pitch-tracker is more robust to mistakes
on W i than the first one. Figure 14 illustrates that
indeed, in the case of the presence of a more noisy
harmonic, taking the average spectrum is a more
realiable method.
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4.2.2 Instrumental sound
We will now demonstrate the workings of the two
pitch trackers using a realistic example: a note of the
cello (57 MIDI), for which we have a string resonance
which disrupts the first harmonic (see Figure 1,
between 6 and 10 seconds). For this sound, we obtain
the results shown in Figure 15. The pitch tracker B is
more robust.
In Figure 16, are given the f0 trajectories obtained with
the two pitch trackers when the weights Wi are taken
into account (W1=0). The results are very similar.
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Figure 15: f0 trajectories obtained for the beginning of
a note of cello, for which there is a disruptive

sympathetic resonance; the weights are not taken into
account
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Figure 16: f0 trajectories obtained for the beginning of
a note of cello, for which there is a disruptive

sympathetic resonance; the weights are taken into
account

4.3 Evaluation of the automatic detection
method

We conducted an experiment to get a better insight in
quality and the relevancy of the processing by having
participants listening to the filtered sounds and the
resynthetised sounds obtained with pitch tracker A.
The results of this experiment were used to improve

and validate the automatic detection method used in
pitch tracker B.
For this we use the dataset described in section 1.3,
using a single performance of each instrument at
tempo 60 BPM. Participants judged for each note in
the selected fragment the filtered signal (i.e. the first
four harmonics) and the signal resynthesised with the
resulting fn trajectories. First the original signal was
presented, followed by four pairs of the filtered and
synthesized harmonics, every time judging the
similarity between the filtered and synthesized signal,
and the consistency of the synthesized signal.

The goal of the similarity rating is to check the quality
of the harmonic tracker. The filtered and the
synthesized signals have to be similar (and they have
to be harmonic). If they are different, it means that
something is went wrong with extracting frequency
trajectory (for example, caused by the noise in the
signal is noisy, a resonance, etc.).
The goal of the consistency rating is to check if we
can use the frequency trajectory during the data fusion
stage. We cannot use the frequency trajectory if the
note is not consistent, that is to say if more than one
note is perceived. For instance caused by a jump in
frequency in selecting two competing peaks.
Participants rated similarity on a three point scale,
with 0 indicating that both the filtered and synthesized
signal are different and 2 indicating that they are
similar. They rated consistency on a two point scale,
with 0 indicating that the signal is not consistent, and
1 that it was perceived as one note.
The rating were combined to a final measure as r =
r1/2*r2.
Seven subjects participated to this experiment. The
mean was computer over these seven subjects, and
compared to the results obtained with the automatic
method described in the section 3.2.
For the cello, the correlations between the mean
within the subjects, and each subject are: [0.87 0.86
0.75 0.79 0.85 0.66 0.71]. The mean of these
correlations is 0.78.
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The correlation between the mean within the subjects,
and the results obtained with the automatic method is
0.5.

4.4 Example of the full system
Finally, we will show an example of preferred
method, pitch tracker B, the full system in operation.
For this we return again to the example presented in
the introduction (see Figure 1). In Figure 17, the
spectrogram, the score information and the obtained
frequency trajectories are plotted. In Figure 17, only
the first harmonic is shown. In Figure 1, the first four
harmonics are shown. The dotted score lines indicate
that the corresponding harmonic is not taken into
account. The corresponding portions of the frequency
trajectories are plotted in white. The amplitude
trajectory information is also taken into account.
When the amplitude is too small, the corresponding
portions of the frequency trajectories are not shown
(see for instance the end of each harmonic, after 24
seconds).
As an example, for the long note at 57 MIDI pitch, we
can see in Figure 1 that there is a resonance at the
beginning of this note. So, the harmonic tracker fails
for this part of the signal, as it can be seen. But, after
the data fusion stage, the f0 trajectory shown in Figure
17 is obtained. If we compare this trajectory to the
frequency trajectory obtained for the first harmonic
(Figure 1), the results have been clearly improved.

Figure 17: f0 trajectory obtained for the cello (54.5 bpm);
fusion before peak detection

5 Conclusion and prospects
In this paper, two efficient f0 trackers, which use
knowledge, have been presented and compared. Our
future goal will be to provide models of the vibrato
useful for music synthesis and composition. The first
step of the analysis was to obtain �good� f0

trajectories. The obtained f0   trajectories can be used
to analyse vibrato and portamento.
While our primary motivation of developing this
knowledge-based method is to obtain precise f0

information from the experimental data set, the idea to
use knowledge in f0 tracking can be useful for other
computer music systems as well. For instance, when f0

needs to be tracked in a live situation where score and
timing information is available. The methods
described in this paper can in principle be used for an
efficient f0 tracker that considers only those parts of
the audio signal of the singer or instrumentalist to be
followed that are relevant for f0 tracking.
A measure of the voicing coefficient is also obtained.
It allows us to detect, for instance, silences, noisy state
part (noise component predominant over harmonic
component), but also to check the quality of our
processing.
An interesting extension of our pitch-trackers would
be to use it to analyze polyphonic sounds. For
example, when two harmonics, coming from two
different instruments or voices, are to close, the
corresponding trajectories (see Figure 2) or spectrum
(see Figure 4) would not be used during the fusion
stage.
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