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Abstract

We formulate tempo tracking in a Bayesian framework where a tempo tracker is modeled as a stochastic dynamical system.
The tempo is modeled as a hidden state variable of the system and is estimated from a MIDI performance by Kalman
filtering and smoothing. We also introduce the Tempogram representation, a wavelet-like multiscale expansion of a real
performance, on which the Kalman filter operates.

1 Introduction
An important and interesting subtask in automatic music
transcription is tempo tracking: how to follow the tempo in
a performance that contains expressive timing and tempo
variations. When these tempo fluctuations are correctly
identified it becomes much easier to separate the continu-
ous expressive timing from the discrete note categories (i.e.
quantization). The sense of tempo seems to be carried by
the beats and thus tempo tracking is related to the study of
beat induction, the perception of beats or pulse while lis-
tening to music (see Desain and Honing (1994)). However,
it is still unclear what precisely constitutes tempo and how
it relates to the perception of rhythmical structure. There
is a significant body of research on the psychological and
computational modeling aspects of tempo tracking. Early
work byMichon (1967) describes a systematic study on the
modeling of human behavior in tracking tempo fluctuations
in artificially constructed stimuli. Longuet-Higgins (1976)
proposes a musical parser that produces a metrical interpre-
tation of performed music while tracking tempo changes.
Knowledge about meter helps the tempo tracker to quan-
tize a performance. Desain and Honing (1991) describe a
connectionist model of quantization. Here as well, a tempo
tracker helps to arrive at a correct rhythmical interpretation
of a performance. Both models, however, have not been
systematically tested. Still, quantizers can play a important
role in addressing the difficult problem of what is a correct
tempo interpretation by defining it as the one which results
in a simpler quantization. Large and Jones (1999) describe
an empirical study on tempo tracking, interpreting the ob-
served human behavior in terms of an oscillator model.

Another class of models makes use of prior knowledge
in the form of an annotated score (Dannenberg, 1984; Ver-
coe, 1984). They match the known score to incoming per-
formance data. More recently attempts are made to deal
directly with the audio signal (Goto and Muraoka, 1998;
Scheirer, 1998) without using any prior knowledge. How-

ever, these models assume constant tempo (albeit timing
fluctuations may be present), so are in fact not tempo track-
ers but beat trackers. Although successful for music with a
steady beat, they report problems with syncopated data. All
tempo track models assume an initial tempo (or beat length)
to be known to start up the tempo tracking process (e.g.,
Longuet-Higgins (1976); Large and Jones (1999). There is
few research addressing how to arrive at a reasonable first
estimate. Longuet-Higgins and Lee (1982) propose a model
based on score data, Scheirer (1998) one for audio data. A
complete model should incorporate both aspects.

In this paper we formulate tempo tracking in a statistical
frameworkwhere a tempo tracker is modeled as a stochastic
dynamical system. The tempo is modeled as a hidden state
variable of the system and is estimated by Kalman filtering.

2 Dynamical Systems and the
Kalman Filter

Mathematically, a dynamical system is characterized by a
set of state variables and a set of state transition equations
that describe how state variables evolve with time. For ex-
ample, a perfect metronome can be described as a dynami-
cal system with two state variables: a phase and a period
. Given the values of state variables at ’th step as
and , the next beat occurs at .

The period is constant so . By using vector
notation and by letting we write the state
transition model as

(1)

When the initial state is given, the system is
fully specified.

Such a deterministic model is not realistic for natural
music performance and can not be used for tracking the



tempo in presence of tempo fluctuations and expressive tim-
ing deviations. Tempo fluctuations may be modeled by in-
troducing a noise term that “corrupts” the state vector

(2)

where is a Gaussian random vector with mean and di-
agonal covariance matrix , i.e. . In addition,
expressive timing deviations can be modeled by introducing
a noise term

(3)

where . Here, is the observed “noisy”
beats. In this formulation, tempo tracking corresponds to
estimation of given observations upto ’th step. We note
that we do not observe the (noisy) beat directly but in-
duce it from events in music. This will be the topic of the
next section.

Equations 2 and 3 define a linear dynamical system, be-
cause all noises are assumed to be Gaussian and all rela-
tionships between variables are linear. Hence, all state vec-
tors have Gaussian distributions. A Gaussian distribu-
tion is fully characterized by its mean and covariance ma-
trix and in the context of linear dynamical systems, these
quantities can be estimated very efficiently by a Kalman
filter(Kalman, 1960). The operation of the filter is illus-
trated in Figure 1. The basic model can be extended in
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Figure 1: Operation of the Kalman Filter and Smoother. The
horizontal axis represents the time and the vertical axis represent
the period of the tracker. The system is given by
and . and denote the mean (center)
and covariance (ellipses) of the hidden state given observations

. (a) The algorithm starts with the initial state estimate
at and period . in presence of no evi-

dence, (b) [The beat is observed to be at , The state is updated
to ( ) according to the new evidence. Note that the uncer-
tainty “shrinks”, (c) On the basis of current state a new prediction

is made, (d) Steps are repeated until all evidence is
processed to obtain filtered estimates ( ), . In
this case . (e) Filtered estimates are updated by backtrack-
ing to obtain smoothed estimates (Kalman smooth-
ing).

several directions. First, the state space can be extended
to include additional variables. Additional variables reduce
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Figure 2: Tempogram Calculation. The continuous signal is
obtained from the onset list by convolution with a Gaussian func-
tion. Below, three different basis functions are shown. All are
localized at the same and different . The tempogram at
is calculated by taking the inner product of and .
Due to the sparse nature of the basis functions, the inner product
operation can be implemented very efficiently.

the random walk behavior since they introduce inertia to
the system. The linearity constraint on the Kalman filter
can also be relaxed. Indeed, in tempo tracking such a ex-
tension is necessary to ensure that the period is always
positive. Therefore we define the state transition model in
a warped space defined by the mapping . This
warping also ensures the perceptually more plausible as-
sumption that tempo changes are relative rather than abso-
lute. For example, under this warping, a deceleration from

has the same likelihood as an acceleration from
.

3 Tempogram Representation
In this section, we propose a method to extract the noisy
estimate from the performance. We demonstrate how
a phase and period can be inferred locally, i.e. from
an short segment of an onset list . The Bayesian
formulation of this problem is

(4)

The likelihood term is interpreted as the proba-
bility of the performance given the tempo track. is
the prior probability of and given by the Kalman fil-
ter. It is reasonable to assume that the likelihood
is high when onsets in the performance coincide with
the beats of the tempo track. To construct a likelihood dis-
tribution having this property we propose a similarity mea-
sure between the performance and a local constant tempo
track. First we define a a continuous time signal

where we take , a
Gaussian function with variance . We represent a local
tempo track as a pulse train

where is a translated Dirac delta function,
which represents an impulse located at . The coefficients

are positive constants such that (See Fig-
ure 2). If a causal analysis is desired, can be set to zero



for . When is a sequence decaying to zero ex-
ponentially, i.e. , one has the infinite impulse re-
sponse (IIR) comb filters employed by Scheirer (1998). We
define the tempogram of at as the inner product

(5)

The tempogram representation can be interpreted as the re-
sponse of a comb filter bank and is analogous to a multi-
scale representation (e.g. the wavelet transform), where
and correspond to transition and scaling parameters (Ri-
oul and Vetterli, 1991). In Figure 3 we show a tempogram
obtained from a simple onset sequence. We define the like-
lihood as . The tempogram
gives a local estimate of likely values.

4 Evaluation
Many tempo trackers described in the introduction are often
tested with ad hoc examples. However, to validate tempo
tracking models, more systematic data and rigorous testing
is necessary. A tempo tracker can be evaluated by system-
atically modulating the tempo of the data, for instance by
applying instantaneous or gradual tempo changes and com-
paring the models responses to human behavior (Michon,
1967). Another approach is to evaluate tempo trackers on
a systematically collected set of natural data, monitoring
piano performances in which the use of expressive tempo
change is free. This type of data has, next to being eco-
logically valid, the advantage of reflecting the type of data
one expects automated music transcription systems to deal
with. The latter approach was adopted in this study. For the
experiment six pianists were invited to play arrangements
of two Beatles songs, Michelle and Yesterday. Both pieces
have a relatively simple rhythmic structure with ample op-
portunity to add expressiveness by fluctuating the tempo.
The subjects consisted of one professional jazz player (PJ),
four professional classical performers (PC) and one am-
ateur classical pianist (AC). Each arrangement had to be
played in three tempo conditions, three repetitions per tempo
condition. The tempo conditions were normal, slow and
fast tempo (all in a musically realistic range and all accord-
ing to the judgement of the performer). We present here the
results for these six subjects (6 subjects x 3 tempi x 3 rep-
etitions x 2 pieces - 2 performances = 106 performances).
The final data set will contain four pianists for each cate-
gory (PJ, PC and AC). The performances were recorded on
a Yamaha Disklavier Pro MIDI grand piano using Opcode
Vision. To be able to derive tempo measurements related to
the musical structure (e.g., beat, bar) the performanceswere
matched with the MIDI scores using the structure matcher
of Heijink et al. (2000) available in POCO (Honing, 1990).
Tempo measurements were extracted for the notes that co-
incide with the beat (quarter note) level and the bar (whole
note). In other words, we extract the (noisy) from the
performance guided by the score.
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Figure 3: A simple rhythm and its Tempogram. and
axes correspond to and respectively. The bottom figure
shows the onset sequence (triangles). Assuming flat priors on
and , the curve along the axis is the marginal

. We note that has peaks at ,
which correspond to quarter, eight and sixteenth note level as well
as dotted quarter and half note levels of the original notation. This
distribution can be used to estimate a reasonable initial state.

4.1 Training the Kalman Filter
There are free parameters in the model, namely , ,
and . In principle, all of these parameters can be esti-
mated from data. Here, however, we restrict ourselves to
the estimation of and and set and to appropriate
values. We divided the data set in a training set and a test
set. We compute from the extracted
tempotrack and learn a linear dynamics in the space
by an EM algorithm (Ghahramani and Hinton, 1996). To
find the appropriate filter order (Dimensionality of ) we
trained Kalman filters of orders from 1 to 6. We observed
that a filter of order roughly between 1 and 4 is sufficient
both in bar and beat levels. In any case, there is no large
difference between models of different order.

4.2 Evaluation of tempo tracking performance
We evaluated the accuracy of the tempo tracking perfor-
mance of the complete model with a Kalman filter of order
one and a non-causal comb-filter tempogram with

and . In the tracking experiments, we have
initialized the filter to a reasonable estimate at beat level.
For each performance in the data set, we obtain smoothed
estimates of the beat . We compare to the assumed true
tempotrack as follows: for all we check whether our
beat estimate is contained in the time window
sec. For each performance we calculate the percentage of
correct beats. Figure 4 shows the results for the whole data
set. Note that this is a quite “pessimistic” measure; if the
tracker misses just one beat in the beginning but otherwise
tracks the beat correctly, the correct beat percentage score
would still be very low. Many of the poor quality tempo
tracks are due to problems of this nature.

Naturally, the performance of the tracker depends on the
amount of tempo variations introduced by the performer.
For example, the tempo tracker fails consistently for sub-
ject PC2 who tends to use quite some tempo variation (Ta-
ble 1). The performance is not very different among tempo



conditions but somewhat better for normal tempo (Table 2).
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Figure 4: Histogram of correct beat percentage. 80 per-
formances (of a total of 106) are tracked with an accuracy
between %90-100.

5 Discussion and Future Research
In this paper, we have formulated a tempo tracking model
in a Bayesian framework that incorporates a dynamical sys-
tem and a measurement model. We employed a Kalman fil-
ter based dynamical system and a Tempogram based mea-
surement model. In our view, many of the existing methods
can be viewed as particular choices of a dynamical model
and a measurement model. Bayesian formulation has sev-
eral advantages: First, uncertainties can be integrated into
the system in a natural way and desired quantities can be
inferred in a consistent way. Moreover, prior knowledge
(such as smoothness constraints in the state transitionmodel
and the particular choice of measurement model) are ex-
plicit and can be changed when needed. For example, the
same state transition model can be used for both audio and
MIDI; only the measurement model needs to be elaborated.
For MIDI data, the Tempogram can also be replaced by a
rhythm quantizer (Cemgil et al., 2000). Another advantage
is that, for a large class of related models efficient inference
and learning algorithms are well understood (Ghahramani
and Hinton, 1996). This is appealing since we can train
tempo trackers with different properties automatically from
data. Online (filtering) or offline (smoothing) formulation is
also possible. Online processing is necessary for real time
applications such as automatic accompaniment and offline
processing is desirable for transcription applications. The
evaluation of the model on a systematicly collected set of
natural data shows a high overall correctness. The next step
will be an analysis of the local tempo behavior of the model
(e.g., to test for its robustness once an error occurred) and
characterize it in more qualitative terms (making use of the
different musical conditions present in the full data set).

Subject: PJ AC PC1 PC2 PC3 PC4
Yesterday 95.8 68.0 92.6 62.7 97.6 83.7
Michelle 96.6 98.5 98.5 44.9 75.5 93.5

Table 1: Correct beat percentage for subjects and pieces.

Condition: fast normal slow
% Correct 82.7 88.1 80.5

Table 2: Correct beat percentage for tempo conditions.

Acknowledgments: This research is supported by the Technology
Foundation STW, applied science division of NWO and the tech-
nology programme of the Dutch Ministry of Economic Affairs.
We would like to thank Ric Ashley and Paul Trilsbeek for their
contribution in the design and running of the experiment and we
gratefully acknowledge the pianists from Northwestern University
for their excellent performances.

References
Cemgil, A. T., Desain, P., and Kappen, H. Summer 2000.
“Rhythm quantization for transcription”. Computer Music
Journal, 24:2:60–76.

Dannenberg, R.B. 1984. “An on-line algorithm for real-time ac-
companiment”. In Proceedings of ICMC, San Francisco. pages
193–198.

Desain, P. and Honing, H. 1991. “Quantization of musical time:
a connectionist approach”. In Todd, P. M. and Loy, D. G., ed-
itors, Music and Connectionism., pages 150–167. MIT Press.,
Cambridge, Mass.

Desain, P. and Honing, H. 1994. “A brief introduction to beat
induction”. In Proceedings of ICMC, San Francisco.

Ghahramani, Zoubin and Hinton, Goeffrey E. “Parameter estima-
tion for linear dynamical systems. (crg-tr-96-2)”. Technical re-
port, University of Totronto. Dept. of Computer Science., 1996.

Goto, M. and Muraoka, Y. 1998. “Music understanding at the beat
level: Real-time beat tracking for audio signals”. In Rosenthal,
David F. and Okuno, Hiroshi G., editors, Computational Audi-
tory Scene Analysis.

Heijink, H., Desain, P., and Honing, H. 2000. “Make me a match:
An evaluation of different approaches to score-performance
matching”. Computer Music Journal, 24(1):43–56.

Honing, H. 1990. “Poco: An environment for analysing, modi-
fying, and generating expression in music.”. In Proceedings of
ICMC, San Francisco. pages 364–368.

Kalman, R. E. 1960. “A new approach to linear filtering and pre-
diction problems”. Transaction of the ASME-Journal of Basic
Engineering, pages 35–45.

Large, E. W. and Jones, M. R. 1999. “The dynamics of attend-
ing: How we track time-varying events”. Psychological Re-
view, 106:119–159.

Longuet-Higgins, H. C. and Lee, C.S. 1982. “Perception of mu-
sical rhythms”. Perception.

Longuet-Higgins, H.C. 1976. “The perception of melodies”. Na-
ture, 263:646–653.

Michon, J.A. 1967. “Timing in temporal tracking”. In Soester-
berg: RVO TNO.

Rioul, Oliver and Vetterli, Martin. 1991. “Wavelets and signal
processing”. IEEE Signal Processing Magazine, October:14–
38.

Scheirer, E. D. 1998. “Tempo and beat analysis of acoustic musi-
cal signals”. Journal of Acoustical Society of America, 103:1:
588–601.

Vercoe, B. 1984. “The synthetic performer in the context of live
performance”. In Proceedings of ICMC, San Francisco. pages
199–200.


