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ABSTRACT — A matcher is an algorithm that links events in a musical
performance to the corresponding events in a score. Matching is diffi-
cult because performers make errors, performers use expressive tim-
ing, and scores are frequently underspecified. In this article, two
existing matchers are discussed. A general control structrure is de-
scribed that is used to respecify these matchers, in order to be able to
compare them. A new matcher is proposed that uses structural annota-
tions in the score to deal better with the difficulties in matching.

1 Background

Composers of classical music traditionally create musical scores, which musi-
cians translate into performances. A score specifies which notes should be played in
what order, and gives information about tempo, loudness, articulation, and struc-
ture. The score also contains symbols indicating ornaments like trills, grace notes
and glissandi. Whereas information about pitch, note onset, and note duration is
unambiguous, information about tempo, loudness, phrasing, articulation, and orna-
ments is generally not.

Before we explore the relation between scores and performances, we must clar-
ify some terminology. We have to distinguish between a score in musical notation
(paper score) and a computational representation of that score (score representation).
Similarly, the act of performing music (live performance) will be distinguished from
a computationally represented performance (performance representation). In this
paper, performances are restricted to MIDI recordings of piano music. In these kinds
of performances, the pitch, onset, and duration of every note are clearly defined. We
do not consider other aspects of notes, such as timbre or loudness.
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Figure 1: The relation between paper scores, live performances, computer represen-
tations of scores and computer representations of performances.



The procedure that relates events in a performance to the corresponding events
in a score is called matching. A person reading a paper score along with a live per-
formance is matching, but usually the term is reserved for computer programs that
are called matchers. Figure 1 summarizes the relation between the concepts men-
tioned above.

Matchers are used in different contexts for different tasks. One category of algo-
rithms focuses on real-time matching, often called score following (Dannenberg,
1984; Puckette and Lippe, 1992). Another family of algorithms is concerned with
non-real-time analyses (Large, 1993; Heijink, 1996; Hoshishiba, Horiguchi, & Fuji-
naga, 1996), where the quality of the match is more important than efficiency, and
the matcher does not have to make decisions in real time.

Accurate matching algorithms are crucial for real-time composition and auto-
matic accompaniment systems. In the context of music performance research,
matching algorithms are necessary to be able to measure aspects of a performance
like timing: it must be known which performance note relates to which score note to
be able to, for example, extract expressive timing patterns and calculate local tempi.

Matching is a complex task for three reasons: performers make errors, perform-
ers make use of expressive timing, and scores are frequently underspecified. We will
now discuss each of these aspects in turn.

1.1 Performance Errors

Errors are often introduced in the process of transforming the paper score into a
live performance. Such errors arise from different sources: notes can be erroneously
planned, or properly planned and erroneously executed (Palmer & Van de Sande,
1993). Moreover, if the performer is recorded via a MIDI keyboard, even lightly
brushing a key can cause the computer to detect a note, even though the performer
did not produce any sound.

A representation for a score and a performance must first be specified to give
examples of the different types of errors a matcher encounters. Virtually every
matcher uses an approach based on pitch and onset information; this generally
yields good results (Hoshishiba et al., 1996; Heijink, Windsor, & Desain, 2000). We
will therefore use only this information and see how far it gets us. A score note will
be represented as a pair (P, i), where P is the pitch in uppercase letters, and i is the
symbolic onset time, a rational number. The onset time is symbolic because a paper
score never specifies onset times; it only specifies relative durations. A performance
note is represented as a pair (p, t), where p is the pitch in lowercase letters and ¢ is
the onset time in seconds.

This notation is used in Figure 2, which shows three different performances of
the same score. The performances are on the left, and the scores are on the right.
Essentially, there are three kinds of errors: some notes are specified in the score that
are omitted (deletion errors) as in Figure 2a, and some notes are played that are not
in the score (insertion errors) as in Figure 2b.

Some combinations of insertion and deletion errors can be interpreted as substi-
tution errors, as in Figure 2c, and one of the matchers we discuss in the next section
(Large, 1993) is able to make this interpretation. This matcher was used in the con-
text of research into performance errors made by pianists of different levels of exper-
tise (Palmer & Van de Sande, 1993).



If we knew beforehand that there were no errors in the performance, the
matching problem would be simplified. However, even expert performers make mis-
takes. When notes are omitted (deletion error) or added (insertion error), there are
often many alternative interpretations of the relation between the performance and
the score, especially when the score contains several repeated notes on the same
pitch and the performer omits one of them. Extreme use of expressive timing and
unexpected interpretations of ornaments may also cause a matcher to misinterpret
correct performance events as errors.
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Figure 2: Examples of performance errors: (a) deletion error, (b) insertion error,
and (c) substitution error, a combination of an insertion and a deletion error. The
symbols used here are explained in the text.

1.2 Expressive Timing

The matchers we discuss in this article use two order constraints. First, notes
that should sound simultaneously according to the score can occur in any order in
the performance. If, for instance, a score specifies a chord C, E, G, the performance
might be C, E, G, in that order, but the performance could also be E, C, G, or G, E, C,
due to motor noise, expressive intentions, or recording artifacts. Second, notes in dif-
ferent chords should occur in the order specified in the score. It follows that notes
within the same melody cannot be reversed.
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Figure 3: An example of voice asynchrony. To distinguish the top voice from the
bottom voice, the top voice is in bold face. dashed lines indicate matches that
should be made, but are violating the score order.

Most matchers use a very simple concept of note order with regard to scores. A
score is represented as a list of notes ordered by onset time and is consequently re-
garded as a sequence of chords; two notes are in the same chord if they have the
same onset; they are in different chords if they have different onsets. However, most



paper scores have a different structure, for instance, when there are multiple paral-
lel voices. Some performance notes can occur in a different order than specified in a
score representation, e.g., when voices are played out of phase from each other as a
result of using extreme expressive timing.

As an example, consider the score and performance in Figure 3. The score speci-
fies that notes (D5 2) and (A4 2) should be played at the same time, and both before
note (A4 3). Note that two notes that should be played simultaneously according to
the score can reverse order in the performance.

In this case, the performer apparently let the two voices go out of phase, such
that note (d5 3.6) is actually played after note (a4 3.5). A matcher is now unable to
match (d5 3.6) to (D5 2) without violating the order of the score. We will return to
this problem in the section entitled The Structure Matcher.

1.3 Underspecification of Scores

There may be events in the score that are not written out completely, for exam-
ple, certain kinds of ornaments that are often open to different interpretations. A
trill, for instance, can start on the main note or on the note a second above that;
moreover, the trill may or may not have a suffix. Therefore, it is unclear how many
notes will be in the trill, or even what notes will be in the trill.

2 Existing Research

A very straightforward matcher is the strict matcher, part of the POCO envi-
ronment (Honing, 1990). The name 'strict' is owing to the fact that the order of the
notes, as notated in the score, is taken as a strict temporal constraint on the per-
formance. Notes that have different score times are assumed to be performed in that
order in the performance, while notes that have identical score times are allowed to
occur in any temporal order. The strict matcher makes use of a window of fixed size
that slides through the score, and successive notes from the performance are given a
chance to match the score notes in this window. The size of the window, a parameter
of the algorithm, is measured in number of score clusters. A cluster is either a single
note or several notes expected to happen at the same time. For example, the strict
matcher reduces the paper score in Figure 4a to a list of notes, ordered by onset time
and grouped in clusters, as in Figure 4b.
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Figure 4: (a) A paper score and (b) the corresponding score representation.



The strict matcher can match two performance notes to two score notes that are
in the same score cluster if the onsets of the performance notes differ less than the
maximum inter-onset interval (maximum-ioi). It can match two performance notes to
two score notes that are in different score clusters if the onsets of the performance
notes differ more than the minimum inter-onset interval (minimum-ioi).

The window is advanced through the score when the first cluster in the window
contains no more notes that can be matched. This occurs when all the notes in that
cluster have been matched, or when a note in a later cluster has been matched, so
the score order would be violated if another note in the first cluster would be
matched.

The values of the window-size, maximume-iol, and minimum-iol parameters are
important to the performance of the matcher, because they determine the decision
about the type of an error. If the window is too small, the matching score note for a
performance note might fall outside the window, causing the performance note to be
mistakenly interpreted as an insertion error. On the other hand, if the window is too
large, insertion errors might be interpreted as matches instead. Likewise, the mini-
mum-iol and maximum-iol parameters can cause misinterpretations of score notes
or performance notes.

The strict matcher considers only one possible interpretation of the relationship
between score and performance at any point in time, and if an erroneous decision is
made, it cannot be corrected later. The strict matcher performs well and efficiently
with expert performances, i.e., performances where errors occur only occasionally.
However, even in these cases the matcher fails when there is an error in the context
of many repeated notes and when parallel voices go out of phase, and the order rep-
resented in the score is no longer respected.

Another approach to matching was pioneered by Dannenberg (1984), whose
matcher considers many possible alternative matches at any point in time. As an
example of this type of matcher, we will discuss a matcher proposed by Large (1993),
to which we will refer as the Large matcher. The Large matcher calculates the glob-
ally optimal match between a score and performance based on a given 'goodness'
function. It treats the score in the same way as the strict matcher, namely, as a se-
quence of clusters. In contrast to the strict matcher, however, it does not process the
performance note by note, but divides the performance into clusters before trying to
match it to the score. For this, the matcher uses a maximume-iol parameter analo-
gously to the strict matcher. The Large matcher interprets some combinations of in-
sertion and deletion as substitution errors; it was used in the context of performance
error research, where a classification of errors was important (Palmer & Van de
Sande, 1993).

Suppose the score has n clusters and the performance has m clusters. To find
the globally optimal match, the Large matcher constructs a table of n rows and m
columns, where every cell in the table represents a particular combination of a score
cluster and a performance cluster and the whole table represents all possible match
alternatives (Large, 1993). The idea behind this procedure is that an optimal match
will contain optimal partial matches. The rating at position (i, j) in the table reflects
the total goodness of the optimal partial match between the score from cluster i + 1
and the performance from cluster j + 1, augmented with the goodness of the combi-
nation of score cluster i and performance cluster j. The goodness measure is deter-
mined empirically, and depends upon the character of the performances that are
being matched (Large, 1998). After the table has been constructed, the globally op-



timal match can be read from it. The Large matcher is intrinsically non-real time,
since the method uses complete knowledge of the performance and the score to find
the globally optimal match. Contrary to the strict matcher, the Large matcher is
guaranteed to find this globally optimal match.

When the performance contains few errors, much unnecessary information is
calculated. The matcher could be made more efficient by calculating only a band
around the diagonal from top-left to bottom-right in the table, instead of computing
the entire table: If there were no errors in the performance, the whole match would
fall on the diagonal. This approach is used in Dannenberg (1984), where a score
window of fixed size was used to limit the size of the diagonal band in the table.
When using a window of fixed size, however, it is possible to overlook the globally
optimal match, because some information is never considered.

Hoshishiba, Horiguchi and Fujinaga (1996) proposed a matcher that assigns a
cost to a transition from one combination of score and performance clusters to an-
other combination. If that transition is made by matching the clusters, the cost is
low; if the combination is interpreted as an error, the cost is high. In this way, their
matcher constructs a table, where all the cells are connected to their neighboring
cells. The best match is then represented as the shortest or cheapest path along the
transitions in the table. Like the Large matcher, this matcher calculates too much
information if there are few errors in the performance. A similar approach was advo-
cated in Heijink (1996) and an improvement of this approach that solves the effi-
ciency problem was proposed in Desain, Honing and Heijink (1997).

2.1 Summary of Existing Research

We have touched on several matchers briefly and discussed two matchers in de-
tail. The strict matcher and the Large matcher deal in different ways with the three
main problems of matching described in the introduction. Both matchers focus on
the problem of performance errors, but the Large matcher tends to be more robust in
this respect.

With regard to other issues, several authors (Desain & Honing, 1992; Puckette
& Lippe, 1992) have acknowledged the problem of expressive timing and its conse-
quences for the behavior of a matcher. So far, no solutions have been proposed.

Indeterminate ornaments are treated only in a matcher proposed by Dannen-
berg and Mukaino (1988). This matcher is able to handle certain types of trills and
glissandi in a simple yet elegant way. However, we would advocate a more general
and extendable mechanism to be able to deal with all kinds of ornaments.

Some authors report good results by matching algorithms (Large, 1993; Dan-
nenberg, 1984; Dannenberg & Mukaino, 1988; Grubb & Dannenberg, 1997), but
these algorithms are solving a different problem, or are only applicable in certain
situations. However, even in evaluations by the authors themselves, some practical
matching programs are largely unsuccesful; some researchers even abandon the
whole idea of a successful matcher altogether (Puckette & Lippe, 1992).

Experienced human listeners have little or no problem in matching a live per-
formance to a paper score in real time. This is still convincing evidence that robust
score-performance matching is feasible, and it inspired us to yet another attempt,
based on ideas on mental representation of temporal structure that were developed
in the context of studies on expressive timing in music (Desain & Honing, 1992).



3 A Comparison of Different Matching Approaches

Authors of existing matchers describe the way in which their matchers solve a
problem, rather than what the solution is. In other words, they describe the imple-
mentation of the matchers, rather than the specification (the logical constraints that
must hold between score, performance, and matcher) that led to the implementation.
Because existing matchers have been implemented in different ways, it is difficult to
compare them. For this reason, we have designed a general control structure for
matchers, and have specified the strict matcher and the Large matcher in terms of
this control structure. We will show that these two matchers are in fact different in-
stances of the same approach. Finally, we will introduce a new matcher that uses
structural annotations in the score and show how it can be specified in the same way
as the existing matchers.

3.1 A General Control Structure for Matchers

In matching, it is often difficult to decide which note in the score can be
matched to a particular performance note. For instance, if the score specifies two
consecutive notes with the same pitch, and the performer plays only one of them,
that performance note could be matched to either one of the score notes, depending
on the situation. An approach that attempts to make a correct decision quickly, like
the strict matcher, needs much contextual information. A decision for a present
situation may even depend on decisions to be taken later in the process.

The approach we took regarding this problem is similar to the one described in
Large (1993). We will allow a matcher to interpret a situation in all possible ways,
and postpone the decision about the correct interpretation until all of the alternative
interpretations are fully considered.

To clarify this, we must introduce the concept of states. A state contains all the
information the matcher needs to make an interpretation of the current situation. At
any time during the matching process—that is, in any state—the matcher considers
a combination of a particular score note and a particular performance note. De-
pending on the matcher, it could also consider several notes at the same time. In
general, a state contains at least a score cluster and a performance cluster. Both
clusters could consist of one or more notes, depending on the situation and the
matcher. From a state, the matcher can make transitions to other states. After a
transition, the matcher looks at a different place in the performance, at a different
place in the score, or both.

All the information the matcher needs is, by definition, contained in a state to
prevent the matcher from having to look back at earlier states or transitions. This
means that if a matcher needs more information than just the current score and per-
formance cluster—for instance, the strict matcher needs to know the last match
made to be able to use the minimum-ioi and maximum-ioi parameters—that infor-
mation needs to be in the state. We will return to this point after giving an example
of the matching process.

Consider a hypothetical matcher that starts at the beginning of the score and
the performance and can make three different state transitions at any point. First, it
can interpret a state as an insertion error, in which case it skips a note in the per-
formance. Second, it can interpret a state as a deletion error, in which case it skips a
note in the score. Third, it can interpret a state as a match, in which case it proceeds
by one note in both the score and the performance and stores the match. It can only



interpret a state as a match if the pitch of the performance note is equal to the pitch
of the score note. The hypothetical matcher tries to match the performance {(a3 1.2),
(b3 2.7)} to the score {(A3 1), (B3 2), (B3 3)}.

The matcher interprets every state in three ways and can therefore make two or
three transitions, depending on whether a match is possible, so the tree shown in
Figure 5 is formed. A state is represented as a node in this tree and is denoted as a
performance note followed by a score note in angular brackets. A transition is repre-
sented by an edge. The root node is defined as the node without any incoming edges,
a terminal node is a node without outgoing edges and an end node is a node repre-
senting a state where both the end of the score and the end of the performance have
been reached. This means that every end node is a terminal node, but not vice versa.
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Figure 5: The tree resulting from a match between the performance (a3 1.2), (b3
2.7) and the score (A3 1), (B3 2), (B3 3). The characters next to the edges denote the
transitions: m, d and 1 stand for match, deletion error and insertion error, respec-
tively. A dash instead of a note in the cluster indicates the end of the score or per-
formance is reached.

Every path through the tree from the root node to a terminal node represents a
valid match alternative, from which the matcher must choose the best one. The best
match alternative is the alternative that contains the most match transitions. The
matcher in question determines how this alternative is selected.

Notice that there are some states that are represented more than once in the
tree. This means that some alternatives are considered more than once. In the case
of large scores and performances this approach is not adequate: the resulting combi-
natorial explosion must be harnessed before we can speak of a feasible solution. For
this we use dynamic programming (Cormen, Leiserson, & Rivest, 1990), noting



where two independently developed matching paths arrive again at a same state.
Recall that any matcher is required to make its decision about what state transi-
tions to allow on the basis of the information in the current state only. In this case, a
state contains only a performance note and a score note. By definition, two different
paths ending in the same state will develop in exactly the same way. We can there-
fore safely combine paths that have common states. The result of this joining of
paths in the tree from Figure 5 is the graph in Figure 6. As in the tree of Figure 5,
any path through the graph from the root node to a terminal node represents a valid
match alternative, from which the matcher has to choose the best one.
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Figure 6: A graph representation of the tree in Figure 5 to prevent representing
equal branches more than once.

Although a valuable solution, the use of dynamic programming still yields an
enormous data structure for large pieces, and more optimization is required. Fortu-
nately, because expansion of any node in the graph depends only on the contents of
the state it represents, the order of expansion is not important, and it is possible to
expand the most promising alternative first. For this, a definition of 'most promising
alternative' is needed so that each edge or state transition is labeled with a cost; the
most promising alternative is defined as the cheapest alternative. The exact cost of
each state transition is determined by the rules of the matcher. By expanding nodes
in order of their cost the search is structured to obtain a best-first order of path con-
struction in the graph, which prevents the computation of unnecessary information.

The method we outline here is a variant on a standard algorithm for finding the
shortest paths from one node to every other node in a directed graph (Dijkstra,
1959). The approach of building a partial graph and selecting the best path in it has
already been used by Van der Helm and Leeuwenberg (1991) to account for regular-



ity and symmetry in mental codes for visual perception, and for a model of piano fin-
gering (Parncutt, Sloboda, Clarke, Raekallio, & Desain, 1997) that calculates an op-
timal fingering pattern among the millions of possible alternatives.

When one path has reached an end node, the cost of that path becomes an upper
bound for the cost of other paths. This means that all partial paths with a cost
higher than the cost of the first path need not be expanded any further, assuming
the cost of a path cannot decrease. However, there could be partial paths with a cost
lower than the cost of the first path. If, in expanding the cheaper partial paths, a
new one reaches the end node with a lower cost than the first complete path, the up-
per bound is lowered to the cost of this path. If there are no more partial paths
cheaper than this upper bound, all the best match paths have been found.

The mechanism of specifying an upper bound for the cost of a match path main-
tains its usefulness if more matches must be found than just best matches. If the
upper bound is removed after the best paths have been found, the graph building
process 1s resumed until the set of next-best alternatives has been calculated.

The process of building the graph is called phase one. When the relevant part of
the graph has been built, generally more than one optimal path exists. Phase two
consists of the selection of one path from a potentially large number of best paths.
All the paths that are considered in phase two have an equal number of matches, so
in the second phase the matcher must use other information such as timing to be
able to distinguish the paths. A matcher can use much more information in this
phase, because the number of alternatives to compare is much smaller. The strict
matcher and the Large matcher do not use timing information, but rather choose a
path in the second phase based on the order in which transitions occurred in the
first phase. In their original specifications, the second phase was wholly or partly
entwined with the first phase. By pulling the two phases apart, it became apparent
that these matchers arbitrarily choose a path in the second phase.

3.2 Cost Functions

Cost functions assign costs to transitions. A cost function must satisfy two con-
straints: First, it should provide a definition of the best match path. We defined this
to be the path containing the most matches or, equivalently, the fewest errors. Sec-
ond, a cost function should assign only non-negative costs to transitions. If the cost
of a path could decrease with length, the upper bound provided by the complete path
would be meaningless, since a partial path more expensive than the upper bound
could become cheaper again later.

An infinite number of cost functions satisfy the constraints, but the exact defini-
tion of a cost function has an enormous effect on the size of the graph generated in
the first phase. A simple cost function satisfying the above constraints assigns a cost
of zero to a match transition and a cost of one to both an insertion and a deletion
transition. The cost of a path is then the total number of insertions and deletions in
the path.

This simple cost function will assign the same cost to a very short partial match
path and a complete match path if they have the same number of errors, which may
lead to much unnecessary computation. Ordering the paths with the same number of
errors according to their lengths helps in limiting this effect. Moreover, if the score
contains more notes than the performance, one needs a minimum number of dele-
tions in the interpretation to be able to reach the end state. A cost function that does
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not assign a high cost to a deletion in a state in which deletions are still needed is
also beneficial for the efficiency of the search. These issues led us to the formulation
of cost functions that greatly reduced computation time, but a more elaborate analy-
sis is still needed. Since cost functions only affect the efficiency of the matcher and
not the result, we will not discuss them in the rest of this article.

3.3 An Example

We will now give an example of how the hypothetical matcher from the previous
section uses a best-first strategy. Going back to the example performance and score
of Figure 5, suppose we use a simple cost function that assigns a cost of zero to a
match and a cost of one to insertion and deletion errors. The matcher expands the
nodes in the graph in a wavelike pattern, starting at the root node (see Figure 7).
The waves reflect the order in which the graph is built.

In the following sections, the strict matcher and the Large matcher will be
specified in terms of the general control structure. For each matcher, we need to
specify a method to proceed through the score and the performance, the amount of
information a state should contain, and the permissable state transitions. This de-
termines the first phase of matching: building the graph. For the second phase, we
must specify how one match path is selected from the potentially large number of
match paths found in phase one.

<(@3 1.2), (A3 1)>:0
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Figure 7: Best-first graph expansion: behind the state is the cost of the node; order
of expansion is indicated by the numbered lines.

Because the strict matcher and the Large matcher use different parameters, it
is difficult to compare them. For example, should the value of the maximum-ioi pa-
rameter be equal for both, or do the matchers react differently to the same value?
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For this reason, we have chosen to modify them in such a way that no parameters
are necessary. We have called the resulting matchers the general strict matcher and
the general Large matcher.

The original strict matcher decided whether a state where no notes could be
matched was an insertion error or a deletion error, based on the maximum-iol and
minimum-ioi parameters. The general strict matcher does not attempt to decide on a
single interpretation of a state, but allows all possible interpretations. It chooses the
one containing the greatest number of matches after all the alternatives have been
fully investigated, in phase two. Therefore, it does not need the maximum-ioi and
minimume-iol parameters.

The original Large matcher attempted to divide the performance into clusters
before matching the performance and the score. The size of the clusters was based
on the maximum-ioi parameter. The general Large matcher uses the general control
structure to find the optimal clustering of the performance during the matching
process itself.

In the original versions of the matchers, there was a distinction between possi-
ble paths (only one, in the case of the strict matcher) and impossible paths. The gen-
eral versions of the strict and Large matchers represent the strength of the general
control structure in combination with a cost function: there is no distinction between
possible and impossible paths. Instead, every path is more likely or less likely to be
the best one.

3.4 The General Strict Matcher

The general strict matcher reads the performance note-by-note and the score
cluster-by-cluster. This means that a state contains one performance note and a set
of score notes that all have the same onset time. The most important distinction be-
tween the original strict matcher and the general strict matcher is that the general
strict matcher always considers multiple alternative matches, whereas the original
strict matcher always considers exactly one match alternative. Moreover, the origi-
nal strict matcher poses some constraints on the match that are side effects of the
implementation, rather than design considerations. We have lifted these constraints
in the general strict matcher.

<X, Y> <X, Y>
m i d
<next(x), next(Y)> <next(x), Y> <X, next(Y)>
(@) (b)

Figure 8: Expansion behavior of the general strict matcher: (a) note x matches (m)
with a note in cluster Y, (b) note x does not match any note in the score cluster Y,
so this situation is an insertion error (i) or a deletion error (d).

When in a particular state the performance note matches a note in the score
cluster, a match is made. If the performance note does not match any note in the
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score cluster, both a deletion error and an insertion error are considered. This leads
to the expansion behavior depicted in Figure 8.

When x matches a note in the score cluster, as in Figure 8a, the next state con-
tains the next performance note and the score cluster without the matched note. If
the score cluster contains only one note, the next score cluster is fetched. If there are
no matching pitches, as in Figure 8b, both an insertion error and a deletion error are
considered.

When the whole graph has been built, several match paths exist. Each of these
represents a subset of all possible strict matches between score and performance. In
the second phase, the general strict matcher must choose one path from this set: the
path that the original strict matcher would choose.

The original strict matcher always matches a performance note when possible.
Suppose the matcher is comparing match path A and match path B. It then searches
for the first performance note, say p, that is matched in one alternative, but not in
the other. If p is matched in A but not in B, the matcher chooses match path A over
match path B, and vice versa. In this way the general strict matcher chooses the
path the original strict matcher would have chosen from the set of all complete
match paths.

3.5 The General Large Matcher

We also have respecified the Large Matcher on top of our general control struc-
ture. In the original Large matcher, both the score and the performance are read
cluster-by-cluster. Thus, for the general Large matcher, every state contains a per-
formance cluster and a score cluster. A score cluster is a group of notes with equal
onset times; a performance cluster is a group of notes such that every consecutive
pair of notes has an interonset interval smaller than the maximum-ioi.

In the general Large matcher, this parameter has been eliminated. Instead, we
have introduced an extra transition, called cluster enlargement, that adds an extra
note to the performance cluster. This transition is applicable in every state, so every
score cluster is matched against a performance cluster that grows until it 'fits' the
score cluster. The cluster-enlargement transition, in combination with the cost func-
tion, automatically finds the optimal clustering of the performance in the course of
the matching process.

Another transition is the substitution-error transition. If both the score and the
performance cluster contain exactly one note and their pitches are not equal, they
are treated as a substitution error.

The expansion behavior is depicted in Figure 9. The Large matcher is always
allowed to make an insertion-error or a deletion-error transition, even if two clusters
match. If a match is made, the remaining nonmatching notes from the score cluster
are considered to be deletion errors and the remaining notes of the performance
cluster are considered to be insertion errors.

A cost function for the general Large matcher is more complicated than a cost
function for the strict matcher, because the Large matcher has two extra transitions:
substitution error and cluster enlargement. A substitution error should be more ex-
pensive than a match and less expensive than the combination of an insertion and a
deletion error. The cost of a cluster enlargement should be low if the performance
cluster contains less notes than the score cluster and high if the performance cluster
contains more notes than the score cluster. In this way, a match path where per-

13



formance clusters are the same size as the corresponding score clusters will be
cheapest.

In the second phase, the general Large matcher chooses the best path in the
graph in the same way as the general strict matcher. This is not always the same
path as the Large matcher would have chosen, but because the choice is arbitrary in
both cases, this choice is as good as the other and it makes the matchers easier to
compare.

<X, Y>

d \
ext(Y)>

<next(x), next(Y)> <X, n <next(x), next(Y)>
<next(x), Y> <X + next(x), Y>

Figure 9: Expansion behavior of the general Large matcher: a match (m), an inser-
tion error (i), a deletion error (d), a substitution error (s) or a performance cluster
expansion (e).

3.6 Further Generalizations of the Strict Matcher and the
Large Matcher

We have already concluded that there were some idiosyncratic characteristics of
the existing matchers that were not apparent in their original specifications. These
conclusions could only be drawn from the kind of analyses and respecifications we
undertook and inspired us to develop the strict matcher into a general strict matcher
and the Large matcher into a general Large matcher, in order to make their behav-
ior more logical and comparable. From the specifications in the previous section, one
sees that the general strict matcher and the general Large matcher are in fact very
much alike. They have different expansion behaviors and different cost functions,
but essentially, they use the same strategy.

If we allow the general strict matcher to interpret a situation where only a
match would be possible as an insertion, deletion, or a substitution, the general
strict matcher and the general Large matcher can use the same cost function. If the
two matchers use the same cost function and the same expansion behavior, they
only differ in the way they process the performance and both matchers will ulti-
mately choose the same path. A test of the behavior of these matchers on two Chopin
pieces shows that this is indeed the case. The two matchers make the same interpre-
tation of an error in 93 percent of the cases and the differences in interpretation are
explained by the substitution-error transition (Heijink, Windsor, & Desain, 2000).

3.7 A Structure Matcher

Neither the general strict matcher, nor the general Large matcher can cope with
extreme expressive timing or with ornaments in a satisfactory way. In order to bet-
ter deal with these problems, we propose another matcher. This matcher, called the
structure matcher (Heijink, 1996; Desain, Honing, & Heijink, 1997) is based on the
idea that temporal structure annotated in the computer score gives a matcher more
clues regarding how to interpret the performance, analogously to structural annota-
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tions in a paper score giving a human listener more clues. This is also motivated by
the observation that, while expressive timing may greatly upset the order of events
as specified in the score, it will mainly do so in ways respecting the musical struc-
ture (Desain & Honing, 1992). For instance, notes in a melodic line are not likely to
be played in a different order, while parallel voices can be timed independently of
each other, so notes in two parallel voices may occur in any order.

If temporal structure (chords, voices, etc.) is annotated in the score, we can pre-
dict which order constraints will be observed. These annotations enable us to deal
with expressive timing and handle the problem depicted in Figure 3. We will restrict
the discussion here to two types of temporal structure, annotated as S (for sequen-
tial) and P (for parallel) in the score. A sequential object comprises a number of ob-
jects occurring one after the other, for instance, a melody. A parallel object
comprises a number of objects occurring at the same time, for instance, a chord, or
several voices played at the same time. The score is then a hierarchical structure
where the lowest level contains notes and all higher levels contains structural units
(Sor P).

Most performances cannot easily be divided into clusters, and we therefore de-
cided to have the structure matcher process the performance note-by-note. Process-
ing the score is more difficult due to the structural annotations. For example,
consider a case where the score contains several parallel voices. Instead of looking at
one score cluster at a time, the structure matcher looks at several score clusters (one
for each voice). The matcher can move forward in any voice independently of the
others, because each voice can be independently timed.

<X, Y>

<next(x), next(Y)> <next(x), Y> <x, next(Y)>

Figure 10: Expansion behavior of the structure matcher: a match (m), an insertion
error (1), or a deletion error (d).

The information in a state is limited to a performance note and one score cluster
for each voice. The matcher does not require any parameters, and the expansion be-
havior is kept simple, as Figure 10 shows. Essentially, this expansion behavior is the
same as the general Large matcher, except that the performance is processed note-
by-note, so the cluster-enlargement transition is not necessary. We decided not to
interpret combinations of errors in the first phase, and to exclude the substitution-
error transition.

If the score is annotated in such a way that it is a sequence of chords, the only
difference between the general strict matcher and the structure matcher is their ex-
pansion behavior. (Compare Figures 8 and 10.) If the score is annotated in another
way, the structure matcher behaves like an organized set of parallel strict matchers,
thereby lifting the restrictions on score structure of the general strict matcher and
the general Large matcher.

The behavior of the structure matcher has been compared to the behavior of the
other two matchers in matching two Chopin pieces. The results show that the struc-
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ture matcher performs much better than the other two matchers. When the struc-
ture matcher interprets a note as an error, the matcher is right in 85 percent of the
cases, while the general strict matcher and the general Large matcher are correct in
42 percent and 46 percent of the cases, respectively (Heijink et al., 2000).

The structure matcher does not make the correct interpretation in all cases, be-
cause it only uses pitch and onset information. Moreover, the onset information is
only used to establish the order of the notes: actual timing information is not used.
In some cases, however, more information is needed to be able to make the correct
decision (Heijink et al., 2000).

4 Conclusions

We have discussed several approaches to matching notes in a musical perform-
ance to the corresponding notes in the score. Although a simple problem at first
sight and an easy task for experienced human listeners, matchers are sometimes not
very successful. This is especially true when performance errors occur, when ex-
treme expressive timing is used, or when there are underspecified ornaments in the
score.

Such difficulties have led some researchers to abandon matching, or to over-
estimate the problems involved. Dynamic programming has proved an elegant solu-
tion to these difficulties. It allows exploration of multiple alternative matches while
keeping the combinatorial explosion of possibilities at bay. This approach has al-
ready been proposed by previous authors, but we use it more extensively as a gen-
eral control structure underneath reimplementations of two different matchers. We
also implemented this approach in a new matcher that uses structural annotations
in the score.

The general strict matcher, the general Large matcher, and the structure
matcher turned out to be very similar. The matchers only differ in expansion be-
havior and in the use of order constraints, but they are all instances of the same ap-
proach. The use of structural information leads to a much better match, as is shown
by Heijink et al. (2000).

We believe we have shown that there are insufficient grounds for pessimism
with regard to the feasibility of robust score-performance matching. Although not all
problems have been solved, robust score-performance matching is feasible if we can
more fully exploit the link between the musical knowledge that is expressed or im-
plied in paper scores, and its rendition in musical performances.

5 Future Work

A fundamental object of study is the nature of real performance mistakes (see,
for example, Palmer & Van de Sande, 1993) and their interpretation by a matcher.
Knowledge of categories of mistakes and how often mistakes in a particular category
are made in various situations can be used in the computation, as is done in a simple
form by the Large matcher.

The annotations used to indicate sequential or parallel structures for the struc-
ture matcher could also be used to specify ornaments, so specialized matchers could
be invoked at the appropriate time to deal with these ornaments. The advantage of
having specialized matchers is that knowledge of special and complex cases need not
be centralized, thereby keeping the algorithm simpler.
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The efficiency of the matchers is a problem that is closely related to the problem
of finding a good cost function. We have seen that pitch information is often not ade-
quate to distinguish several possible match paths. The use of other information,
such as timing information, in the first phase (Vantomme, 1995), rather than in the
second phase, would limit the size of the graph, but would also limit the generality of
the general control structure.

A practical part of the work will be to make the matchers and related tools
available in POCO, and to make POCO directly accessible over the World-Wide Web.
Progress on this will be reported on www.nici.kun.nl/mmm.
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