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In discussing the formalization of musical knowl- 
edge, this article describes an important music- 
representation issue, the "vibrato problem." This 
problem characterizes the need for a knowledge 
representation that can reflect both discrete and 
continuous aspects of music at an abstract and 
controllable level. Two formalisms of functions of 
time that support this notion are compared: the 
approach used in the Canon family of computer 
music composition systems (Dannenberg, 
McAvinney, and Rubine 1986; Dannenberg 1989; 
Dannenberg, Fraley, and Velikonja 1991), and the 
Generalized Time Functions (GTF) Formalism of 
Desain and Honing (1992a, 1993). The comparison 
is based on a simplified version of Dannenberg's 
Arctic, Canon, and Fugue systems (referred to as 
ACF), obtained from the original programs using 
an extraction technique, and a simplified version 
of the GTF system that was made syntactically 
identical to ACF. In general, both approaches solve 
the vibrato problem, though in very different 
ways. The differences are explained in terms of ab- 
straction, modularity, flexibility, transparency, 
and extensibility-important issues in the design 
of a representational system for music (Honing 
1993b). 

Aspects of Musical Knowledge 

In music representation, a distinction can be made 
between discrete, symbolic representations (such 
as music notation) and continuous, numerical rep- 
resentations (as audio or control signals) (see, e.g., 
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De Poli, Piccialli, and Roads 1991). In common 
practice Western music notation can represent 
symbolic constructs such as notes, rests, accents 
or meter, but it lacks ways of describing the con- 
tinuous aspects of music (for example, the indi- 
vidual shaping of a note), other than using simple 
symbols or words such as tremolo or sforzato in 
the score. By contrast, an audio-signal representa- 
tion allows a "complete" description of a piece of 
music, with all its continuous aspects. It includes, 
for example, the instrument's sound quality, the 
room acoustics, etc. This type of representation 
does not have symbolic characteristics, however; 
we cannot (at least not directly) derive from it the 
different streams or voices, the beginning of a 
note, or the metrical structure. 

A similar distinction can be found in computer 
music systems, with discrete, note- and event-ori- 
ented MIDI systems at one end, and continuous, 
signal-oriented, Music V-like systems at the other. 
Sometimes one type of representation is more ap- 
propriate than the other, but a powerful represen- 
tation system for music must integrate both 
aspects. To give an example, one might want to 
describe how certain parameters change continu- 
ously over time, with respect to specific parts or 
levels of the discrete structure. The representation 
system must incorporate specific knowledge on 
how these parameters change or behave under 
transformation of that structure (for instance, how 
a rhythmic fragment's particular kind of phrasing 
depends on its duration). We need to communicate 
information between the continuous and discrete 
aspects of a representation, passing information 
from the discrete components (for example, notes) 
to the continuous components (such as control 
functions), and vice versa. The "vibrato problem" 
(Desain and Honing 1992a) is a relatively simple 
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representational problem, characterizing the kind 
of control that is needed. 

The Vibrato Problem 

In Figure la, a continuous (control) function is 
used for the pitch attribute of a discrete object-a 
note. The problem revolves around what should 
happen to the shape or form of the pitch contour 
of a vibrato when it is used for a longer note, or, 
equivalently, when the note is stretched. In the 
case of its interpretation as a simple sinusoidal vi- 
brato, some extra vibrato cycles should be added 
to the pitch envelope (see the first frame in Figure 
lb)-when interpreted as a sinusoidal glissando, 
the pitch contour should be elastically stretched 
(see the second frame in Figure lb). However, all 
kinds of intermediate and more complex behaviors 
should be expressible as well (see third and fourth 
frames in Figure lb). A similar kind of control is 
needed with respect to the start time of a discrete 
object (see Figure lc): What should happen to the 
contour when it is used for an object at a different 
point in time, or, equivalently, when the note is 
shifted? Again, a large range of possible behaviors 
can be thought of, depending on the interpretation 
of the control function, i.e., the kind of musical 
knowledge embodied-attack-transients, indepen- 
dent or synchronized vibrati, or other functions of 
time (see Figure ld). 

To get the desired isomorphism between the 
representation and the reality of musical sounds, a 
music representation language must support a 
property that we will call "context-sensitive poly- 
morphism." "Polymorphism" for the fact that the 
result of an operation (like stretching) depends on 
its argument type (e.g., a vibrato time function be- 
haves differently under a stretch transformation 
than a glissando time function), "context-sensi- 
tive" because an operation is also dependent on 
the lexical context in which it is used. As an ex- 
ample of the latter, interpret the situation in Fig- 
ure 1c as two notes that occur in parallel, with one 
note starting a bit later than the other. The behav- 
ior of this musical object under transformation is 

now also dependent on whether a particular con- 
trol function is linked to the object as a whole 
(i.e., to describe synchronized vibrati; see second 
frame in Figure ld), or is associated with the indi- 
vidual notes (e.g., an independent vibrato; see first 
frame in Figure ld). Specific language constructs 
are needed to made a distinction between these 
different behaviors. 

Note that the vibrato problem is, in fact, a gen- 
eral issue in temporal knowledge representation, 
and is not restricted to music. In animation, for 
example, we could use similar representation for- 
malisms. Think, for instance, of a scene in which 
a comic-strip character walks from point A to 
point B in a particular way. When one wants to 
use this specific behavior to have the character 
walk over a longer distance, should the character 
make more steps (cf. vibrato) or take larger steps, 
i.e. should it start running (cf. glissando)? 

Dannenberg (1989) describes the "drum roll 
problem"-the discrete analogy of the vibrato 
problem-which in the case of stretching should 
be extended by adding more drum hits, instead of 
slowing down the rate of the drum roll. Several 
systems are based on this idea: the Arctic system 
(Dannenberg, McAvinney, and Rubine 1986), the 
Canon score language (Dannenberg 1989), the 
Fugue composition language (Dannenberg, Fraley, 
and Velikonja 1991), and Fugue's latest incarna- 
tion, Nyquist (Dannenberg 1993). Although these 
systems differ in several aspects, they all use a 
transformation system similar to the one proposed 
in Arctic. This shared mechanism of Arctic, 
Canon, and Fugue (and Nyquist) will be referred to 
as the ACF transformation system. 

The core of the observations in this study are 
based on analyzing the behavior of simplified ver- 
sions of ACF and GTF, extracted from the original 
code using programming language transformation 
techniques (e.g., Friedman, Wand, and Haynes 
1992). This technique of extraction (Honing 
1993a), making a small program from a larger sys- 
tem, is an attractive alternative to rational recon- 
struction (e.g., Richie and Hanna 1990). We will 
refer to such a simplified program as micro-version 
or microworld. It consists of a relatively complete 
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Figure 1. The vibrato 
problem. First, what 
should happen to a con- 
trol-function contour 
when used for a discrete 
musical object with a dif- 
ferent length? For ex- 
ample, a sine wave 

T 

control function is associ- 
ated with the pitch at- 
tribute of a note-vibrato 
(a); possible pitch con- 
tours for the stretched 
note, depending on the in- 
terpretation of the origi- 
nal contour, are shown in 

(b). Second, what should 
happen to the pitch-con- 
tour form when used for a 
discrete musical object at 
a different point in time 
(c)? Possible pitch con- 
tours for the shifted note 
are shown in (d). There 

is, in principle, an infinite 
number of solutions, de- 
pending on the type of 
musical knowledge em- 
bodied by the control 
function. 

T 

*r54 

stretch duratio 
y 

(a) m e -........... 

tine ? 

1Tl 
U 

(b) 

etc. 
time -* 
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Figure 2. Examples of ba- 
sic and compound musi- 
cal objects in the ACF 
family of languages and 
GTF. Pitches are given as 
MIDI key numbers, dura- 
tion as seconds, and am- 
plitude on a 0 to 1 scale. 
A note with pitch 60, du- 

set of essential objects and mechanisms, and at the ration 1, and maximum 
same time it is small and easy to comprehend. 

(note 60 1 1) 

amplitude (a); a sequence 
of a note, a rest, and an- 
other, shorter note (b); 
and three notes in paral- 
lel, each with different 
pitches and amplitudes 
(c). The height of each 
note bar is proportional to 
the corresponding note's 
amplitude. 

Shared Framework of ACF and GTF 

First, we will describe the set of musical objects, 
time functions, and their transformation that is 
shared by the ACF and GTF micro-versions. The 
full Lisp source code of the micro-versions is avail- 
able by Internet ftp from the Computer Music 
Journal archives; it can be found in the directory 
with the uniform resource locator (URL) ftp:// 
www-mitpress.mit.edu/Computer-Music-Journal/ 
Code/ACF_GTF. Both micro-versions use the 
Canon syntax (Dannenberg 1989). On some points 
the ACF systems differ among themselves, this 
will be noted where appropriate. The examples 
will be presented with their graphical output, us- 
ing the micro-versions mentioned above. 

In general, both the ACF and GTF systems pro- 
vide a set of primitive musical objects (in ACF 
these are referred to as "behaviors"), and ways of 
combining them into more complex objects. Ex- 
amples of basic musical objects are note-with 
parameters for duration, pitch, amplitude, and 
other attributes that depend on the synthesis 
method used, and pause-a rest with duration as 
its only parameter. These basic musical objects 
can be combined into compound musical objects 
using the time structuring constructs seq (for se- 
quential ordering) and sim (for simultaneous or 
parallel ordering). Some examples are given in Fig- 
ure 2, which shows simple pitch-time diagrams. 

New musical objects can be defined using the 
standard procedural abstraction (function defini- 
tion) of Lisp, for example, the following Lisp ex- 
pression defines a function named melody that 
consists of three sequential notes. Figure 3 shows 
an example of its use in a simplified pitch-time 
diagram where the thickness of the "note" corre- 
sponds to its loudness. 

;;; define a function 
(defun melody () 

;;; that produces a sequence 
;;; of three notes given as 

T 
. 64 

c' 63 

62- 

61- 

60 

( 
(a) 2 e -3 

time - 

(seq (note 62 1 1) 
(pause 1) 
(note 61 .5 1)) = 

64 

63 

62 

61 

60 
U 

(b) 

(sim (note 62 1 .2) 
(note 61 1 .8) 
(note 60 1 .4)) = 

64- 

63- 

62- 

60 2 3 O 1 2 3 (c) 

;;; (note pitch duration amplitude) 
(seq (note 60 .5 1) 

(note 61 .5 1) 
(note 62 .5 1))) 

Both ACF and GTF provide a set of control func- 
tions-functions of time-and ways of combining 
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Figure 3. Pitch vs. time 
diagram of a sequence 
that consists of a user-de- 
fined musical object (a 
three-note melody) played 
twice. 

Figure 4. Two examples of 
a note that is parameter- 
ized with basic time func- 
tions given as its pitch 
values. An interpolating 
linear ramp with start 

and end values as param- 
eters (a), and a sine wave 
oscillator with offset, 
modulation frequency, 
and amplitude as param- 
eters (b). 

(seq (melody) (melody)) = (note (ramp 60 61) 1 1) => 

64 

63 

64- 

63- 

62- 

61- 

60I 

62 

61 

60 
I I I 
1 2 3 

them. We will use two basic time functions in this 
article: a linear interpolating ramp function, and 
an oscillator that generates a sine wave. 

There are alternative ways of passing time func- 
tions to musical objects. One method is to pass a 
function directly as an attribute to, for instance, 
the pitch parameter of a note (see Figure 4). An al- 
ternative method is to make a musical object with 
simple default values and to obtain the desired re- 
sult by transformation. In one context the first 
method might be more appropriate, in another 
context, the latter. The following examples show 
the equivalence between specification by means of 
transformation and by parameterization (their out- 
put is as shown in Figure 4a and 4b, respectively): 
;; specification by transformation 
;; of a ramp glissando 
(trans (ramp 0 1) (note 60 1 1)) = 
;;; specification by parameterization 
(note (ramp 60 61) 1 1)) 

;; specification by transformation 
;;; of a vibrato using an oscillator 
(trans (oscillator 0 1 1) (note 61 1 1)) = 

;;; specification by parameterization 
(note (oscillator 61 1 1) 1 1)) 

Note that, while specification by means of 
transformation is supported in both ACF and GTF, 
specification by means of parameterization is only 
available in Arctic and GTF. 

Finally, both systems support different types of 
transformations. As an example of a time transfor- 
mation, stretch will be used (see Figure 5a). This 
transformation scales the duration of a musical ob- 

(note (oscillator 61 1 1) 1 1) =* 

64 

63 

62 

61 

6C 

(b) 
0 I I 
0 1 2 3 

ject (its second parameter) by a given factor (its 
first parameter). As examples of attribute transfor- 
mations we will use one for pitch (named trans), 
and one for amplitude (named loud). These trans- 
formations take constants (see Figure 5b, 5c, and 
5d) or time functions (see Figure 5e and 5f) as their 
first argument, and the object to be transformed as 
their second argument. 

The ACF Transformation System 

A central concept in the ACF systems is the notion 
of a transformation environment. This environ- 
ment, or context, is implemented as a number of 
global variables that are dynamically bound and 
serve as implicit parameters to every "behavior" 
(i.e., musical object). Behaviors, transformations, 
and time functions can, in principle, inspect, ig- 
nore, or modify these variables. They are proce- 
dures that know how to change (or "behave") in 

response to, for example, a stretching or transposi- 
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Figure 5. Examples of 
transformations on musi- 
cal objects: a time trans- 
formation-stretch (a); 
a constant amplitude 
transformation-loud 

(b); and a constant pitch 
transform ation-trans 
(c). A few of the many 
possible nestings of these 
two transformations are 
shown: a transposed quiet 

melody (d) and a time- 
varying pitch transforma- 
tion (e); and a 
time-varying amplitude 
transformation (f). 

(stretch 2 (melody)) =~ 

64- 

63- 

62- 

61- 

601 
0 

(trans 2 (loud -0.4 (melody))) =* 

64 

63 

62 

61 

60 

Ul 

(d) 

(loud -0.4 (melody)) => (trans (ramp 0 2) (note 60 1 1)) => 

I , I 

} 1 2 3 

(trans 2 (melody)) =X 

64 

63 

62 

61 

60 

(f) 

(loud (ramp 0 -1) (note 62 1 1)) = 

64 

63 

62 

61 
Eu. 

60 
I I I 

0 1 2 3 
I I I 

0 1 2 3 

tion transformation, and produce continuous sig- 
nals (e.g., graphical output or MIDI) as a side effect. 
The ability of behaviors to adapt themselves-in 
their own specific way-to changes of the values of 
these environment variables is the basis of the ACF 
solution to the vibrato problem; for example, a vi- 
brato behavior will behave differently in an envi- 
ronment modified by a stretch transformation 
than will a glissando behavior. 

While dynamic binding is a popular program- 
ming technique, it often makes a proper under- 
standing of the resulting execution very difficult. 
To get a precise insight in how ACF makes use of 
this technique, we first concentrate on the special 
variables in the environment that have to do with 
time, and take a simple note behavior as an ex- 
ample. We will use diagrams to illustrate the spe- 
cific communication of these implicit parameters 
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Figure 6. The variable 
binding and scope-of-ref- 
erence diagram for the ex- 
pression (note p d). 
The symbol -- is used for 
assignment, + for addi- 
tion, and x for multiplica- 
tion; italics are used for 
functions, bold type for 
formal parameters, bold 

s 0 

not 1 
note 

names above a frame in- 
dicate an operator or 
transformation, and 
curved arrows emphasize 
references. Although 
note, in reality, has more 
than two parameters, in 
these diagrams it is suffi- 
cient to look at pitch p 
and duration d only. 

Figure 7. Binding and 
scope diagram for the ex- 
pression (seq (note po 
do) (note p, dl)), ase- 
quence of two notes. See 
Figure 6 caption for sym- 
bol explanations. 

Figure 8. Binding and 
scope diagram for the ex- 
pression (sim (note po 
do) (note p, dl)), two 
notes in parallel. See Fig- 
ure 6 caption for symbol 
explanations. 

I - 

start +- S 
duration +- d x F 

return(start + duration) 

and the dynamic binding scheme used. In the fig- 
ures that illustrate variable binding, the symbol *- 
is used for assignment, + for addition, and x for 
multiplication. Italics are used for functions, bold 
type for formal parameters, bold names above a 
frame for an operator or transformation, and 
curved arrows emphasize references. 

There are two implicit parameters in the envi- 
ronment that have to do with time. One holds the 
current start time (called time in the ACF sys- 
tems, but here referred to as start or s, to distin- 
guish it from actual time or "now"), the other a 
duration stretch factor (called dur in Arctic and 
Canon, and stretch in Fugue; we will use 
stretch or F, to avoid confusion with duration). 
The global environment is initially set with S 
(start time) as 0 and F (stretch factor) as 1 (see 
Figure 6). A note procedure, evaluated in this en- 
vironment, derives its start time and its stretched 
duration (i.e., product of the note's formal param- 
eter d, for duration, and F) from these implicit pa- 
rameters found in the environment in which the 
note is evaluated. The body of note (indicated 
with an ellipsis in Figure 6) may refer to these 
time parameters. Note that behaviors return their 
end time (or logical stop time, as it is referred to 
in the ACF systems) for use by the time structur- 
ing behaviors seq and sim. 

In Figure 7, an example of the seq behavior is 
shown. It modifies the environment and as a result 
(using dynamic binding), influences the behavior 
of note. The returned end time, after evaluating 

Figure 7 

S +- 0 

F - 1 
aim \ 

eo - noteo 

start +- S 
duration - do 

return(start + 

e1 +-noteI / 
start +- S 
duration v- di 

return(start + 

return(max(eO, el)) 

Figure 8 
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Figure 9. Binding and 
scope diagram for the ex- 
pression (stretch n 
(note p d)), a note 
made n times as long. See 
Figure 6 caption for sym- 
bol explanations. 

Figure 10. Binding and 
scope diagram for the ex- 
pression (trans n 
(note p d)), a note 
with a pitch transposed 
by a constant n. See Fig- 
ure 6 caption for symbol 
explanations. 

S %- 0 

Figure 11. Binding and 
scope diagram for the ex- 
pression (trans (oscil- 
lator of a) (note p 
d)), a note with a pitch 
transposed by a sine wave 
time function constructor 
with parameters offset, 
modulation frequency and 
amplitude. 

s %- 0 
F +- 1 
transpose %- 0 

trans N 

transpose *- n + transpose 

note 
start <- S 
duration <- d x F 

pitch +- p + transpose 

return(start + duration) 

the first note, is used to set the value of s. This 
new value is then used when evaluating the next 
note, resulting in the notes being ordered (i.e., 
played or drawn) one after the other. 

A sim behavior, conversely, will evaluate all its 
arguments with the same start time and return the 
maximum end time (see Figure 8). 

A time transformation in this diagrammatic no- 
tation is shown in Figure 9. The stretch transfor- 
mation alters the duration stretch factor of the 
enclosing environment by multiplying it with a 
factor. As a result, the note's duration will be n 
times as long for a stretch factor of n. 

The next example is an attribute transformation 
(Figure 10). The trans transformation is used for 
transposing the pitch of behaviors (if they have 
such an attribute). The special variable trans- 
pose is therefore introduced in the environment 
as illustrated in Figure 10. The note behavior adds 
the value of transpose to its own explicit pitch 
(the formal parameter p). For every other trans- 
formable attribute (e.g., loudness, channel, or ar- 
ticulation factor), such a special attribute variable 
is added to the environment. 

Finally, in Figure 11 a time-varying transforma- 
tion is shown in the same diagrammatic way for 
comparison. In this example, an oscillator 
function is an argument to the trans transforma- 
tion. Instead of adding a constant value to the 
value of transpose, a new expression is built 
from the result of evaluating the oscillator 
constructor and the value of transpose in the en- 

Figure 10 

S %- 0 

F +- 1 

transpose +- 0 

tranS \ 

transpose - oscillator 

\t ~ ~^return ((t)o+asin21f(t-S)) 

\ @ A 
transpose 

note 

start +- S 

duration v- d x F 

pitch v- p D transpose 

return(start + duration) 

Figure 11 

closing environment (here it is 0, but could be a 
time function as well). The note procedure body 
(i.e., the ellipsis in Figure 11) can refer to this 
"composed" pitch value. Note that oscillator 
is actually a time function constructor, that is, it 
returns a time function. Lambda expressions are 
used to refer to these anonymous time functions. 
They are of the form A(x1, ..., xn)e, where x1, ..., xn 
are parameter names and e some expression. 
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Implementation The GTF Formalism 

The technique used to make nesting of operations 
on different attributes possible, and to communi- 
cate the appropriate values of the environment vari- 
ables to the behaviors, is dynamic binding. Time 
functions, behaviors, and transformations can refer 
to free, but invisible (at the user-level) environment 
parameters. It simplifies procedure-call by using 
implicit parameters that communicate information 
to the behaviors (start, stretch, transpose, 
etc.), and, therefore, mainly cleans up the syntax 
(i.e., syntax abstraction). (Note that the transforma- 
tions in ACF are coded as Lisp macros, not as func- 
tions.) However, since these environment 
parameters play a central role in the behavior of the 
language, the user must be aware of its workings 
when using or extending the language, so there is 
no real abstraction from these implementation de- 
tails (see Abelson and Sussman 1985). 

Furthermore, a particular kind of delayed evalu- 
ation is used. Symbolic expressions, describing 
functions of time, are combined into new expres- 
sions that are not yet evaluated. Only at run-time 
(for example, when the picture is generated) will 
these expressions be evaluated, and return a fully 
transformed function of time. This mechanism 
and the functions of time are made explicit in the 
ACF microworld using a time function combinator 
(shown as ? in the figures). 

Equation 1 shows an example of a time function 
constructor (oscillator) that returns an anony- 
mous function of time k(t). Its behavior is described 
by an expression that has access to time t, the for- 
mal parameters of the oscillator constructor, 
i.e., o (offset), f (frequency), and a (amplitude), 
and to S (start time) that is bound to its value in 
the enclosing environment (cf. Figure 11). 

oscillator(o, f,a) = A(t)o + a sin 2nf(t - S) (1) 

The evaluation of, for example, (oscillator 62 
1 0.5), will produce a closure that consists of a 
function of time k(t) that has bindings to its three 
formal parameters (o, f, and a) and to the current 
(i.e., define time) value of S (S is not a formal pa- 
rameter). 

The approach that was taken in Desain and Hon- 
ing (1992a, 1993) is that of a mixed representa- 
tion-describing those aspects that are best 
represented numerically by continuous control 
functions, and those aspects that are best repre- 
sented symbolically by discrete objects. Together, 
these discrete musical objects and continuous con- 
trol functions can form alternating layers of dis- 
crete and continuous information. For example, a 
phrase can be associated with a continuous ampli- 
tude function, while consisting of notes associated 
with their own envelope functions, which are in 
turn divided into small sections, each with its spe- 
cific amplitude behavior. The lowest layer could 
even be extended all the way down to the level of 
discrete sound samples. 

With respect to the continuous aspects (the vi- 
brato problem), control functions of multiple argu- 
ments were proposed-so called "time functions of 
multiple times" or generalized time functions 
(GTF). These are functions of the actual time, start 
time and duration (or variations thereof) that can be 
linked to a specific attribute of a musical object. 

If we ignore for the moment the dependence of 
time functions on absolute start time, they can be 
plotted as three-dimensional surfaces; they show a 
control value for every point in time, given a cer- 
tain time interval (see Figure 12). Similar plots 
could be made that show a surface dependent on 
start time. A specific surface describes the behav- 
ior under a specific time transformation (e.g., 
stretching the discrete object it is linked to). This 
surface is shown for a simple sinusoidal vibrato 
(Figure 12a) and a sinusoidal glissando (Figure 12b). 
In these pictures, the flat triangle-shaped surface 
of a constant value should be considered unde- 
fined. An extension of the GTF micro-version ex- 
plicitly deals with defining reasonable 
extrapolations of these functions outside the time 
interval of the object they are used for, but this is 
beyond the scope of this article. 

A vertical slice through such a surface describes 
the characteristic behavior for a certain time inter- 
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Figure 12. Two surfaces 
showing the values for 
generalized time func- 
tions as a function of time 
and duration (start time 
is ignored in this depic- 
tion). In the case of a si- 
nusoidal vibrato, we add 

(a) 

more periods of the vi- 
brato function for longer 
durations (a), whereas for 
a sinusoidal glissando, 
the function stretches 
along with the duration 
parameter (b). 

Figure 13. A more com- 
plex generalized time 
function as a function of 
time and duration (start 
time is ignored in the de- 

piction). The appropriate 
time function to be used 
for an object of a certain 
duration is a vertical slice 
out of the surface. 

(b) 

val-the specific time function for a musical ob- 
ject of a certain duration, as shown in Figure 13. 

Furthermore, there are standard ways of combin- 
ing basic GTFs into more complex control func- 
tions, using a set of combinators (compose, 
concatenate, multiply, add, etc.), or by supplying 
GTFs as arguments to other GTFs while the com- 
ponents retain their characteristic behaviors. Dis- 

crete musical objects (like note and pause) also 
have standard ways of being combined into new 
ones (e.g., using the time structuring functions S 
and P-similar to seq and sim in ACF). To inte- 
grate these continuous and discrete aspects, the 
system provides facilities that support different 
kinds of communication between continuous con- 
trol functions and discrete musical objects. For 
example, control functions can be passed to attrib- 
utes of musical objects either by parameterization 
(one passes it directly to an attribute of, e.g., a 
note) or by transformation (where the musical ob- 
jects have default values for their attributes and 
the desired result is obtained by transformation of 
the object). Several other paths of communication 
are supported as well, for instance, passing control 
functions "laterally" between musical objects (i.e., 
to have access to the control functions of the pre- 
ceding or succeeding musical objects in a se- 
quence, e.g., to represent transitions between 
notes) or a "bottom-up" type of communication 
where some outer control function is dependent 
on the behavior of one or more embedded control 
functions (e.g., when defining an overall amplitude 
time function that behaves like a compressor). 
However, we will not discuss these types of com- 
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munication here (see Desain and Honing 1993 for 
more details). 

Implementation 

that the user-level syntax is identical to that in 
the ACF micro-version. 

Comparison 

Musical object generators (like note, seq, or sim) 
are functions of start time, stretch factor, and an 
environment. The latter supports a purely func- 
tional notion of environment (Henderson 1980), 
and is mainly used to define attribute transforma- 
tions in the microworld (see attribute-trans- 
form in the GTF micro-version). Other usage is 
beyond the scope of this article. Musical object 
generators can be freely transformed by means of 
function composition, without actually being cal- 
culated, using delayed evaluation. These functions 
are then only applied to a given start time, stretch 
factor, and environment, and return data structure 
describing the musical object that, in turn, can be 
used as input to a play or draw system. This data 
structure could take many forms, as long as it con- 
tains the start time and duration of the object and 
it is possible to associate GTFs with attributes of 
such objects. In the GTF micro-version, an ad hoc 
unstructured event-list representation is used for 
simplicity-the full system uses a more elegant 
set of hierarchical musical objects. 

Generalized time functions are functions of 
three arguments, start, duration and actual time 
(i.e., k(s, d, t)). Equation 2 shows an example of an 
oscillator time function constructor that re- 
turns such a function (Note that in the case of os- 
cillator, the duration parameter d is ignored.) 

oscillator(o, f, a) = A(s,d,t)o + asin 2f(t - s) (2) 

The interpreter system that, for example, gener- 
ates pictures or prints text, will communicate the 
start time (s) from the object with whose attribute 
the GTF is associated, and sample the resulting 
time function (i.e., a slice out of the specific GTF 
space; cf. Figure 13) according to the needs of the 
output medium. 

The micro-version of the GTF system contains 
only the objects and mechanisms central to the 
current discussion. The naming and order of argu- 
ments of the top-level functions is adapted such 

As we saw above, in the ACF systems, a time func- 
tion is a function of time that has access to vari- 
ables representing duration, start, and stretch factor. 
In the GTF formalism, a time function is a function 
of multiple arguments-start, duration, and actual 
time. Both formalisms acknowledge that, next to 
absolute time, both start time and duration are 
needed to describe appropriate time-varying behav- 
ior under time transformation-for example, to be 
able to distinguish between a glissando and a vi- 
brato. There are, however, several fundamental dif- 
ferences between the two formalisms that are not 
easily identified at first sight. To explore them, the 
syntax of the GTF was made identical to ACF. With 
this identical syntax, we can "port" expressions 
from GTF to ACF and vice versa, and compare the 
(graphical) output-when identical expressions re- 
sult in the same graphical output, we know that the 
systems have the same semantics. 

Referential Transparency 

First, let us look at an example of a compound mu- 
sical object as shown in Figure 14a. It consists of 
two notes in a sequence separated by a rest. Both 
notes have an oscillator time function associ- 
ated with their pitch attribute, a duration of 1.0 
sec and 1.5 sec, respectively, and constant ampli- 
tude. The pause has a duration of 0.5 sec. The ex- 
pression has identical output in ACF and GTF. 

Suppose we want to abstract from this particular 
expression. We can do this by making a procedure 
(using Lisp function definition) that takes any 
time function and communicates it to the pitch 
parameter of the notes. This would give us the fol- 
lowing expression. 

;;; abstract from the pitch parameter 
(defun a-musical-object (pitch) 

(seq (note pitch 1 1) 
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(pause .5) 
(note pitch 1.5 1))) 

When we look at the output of this function ap- 
plied to the same time function that was used in 
Figure 14a, we see that its semantics are different 
in ACF and GTF, as is illustrated in Figure 14b. In 
ACF, the sine wave extends over the rest, whereas 
in GTF the sine wave starts at phase 0 at the be- 
ginning of each note. The same thing happens in 
the closely related expression shown in Figure 14c 
that uses a let binding (the let construct being 
useful "syntactic sugar" for function application). 
This specific difference in semantics between ACF 
and GTF can be explained by having a closer look 
at the two definitions of an oscillator time 
function in the two formalisms (the equations for 
which are repeated below). 

ACF: oscillator(o, f,a) = A(t)o + a sin 2;rf(t - S) (3) 

GTF: oscillator(o, f, a) = A (s,d,t)o + a sin 2f(t - s) (4) 

This seemingly small difference in implementa- 
tion has an important effect on the workings of 
the systems. In the GTF definition of oscillator 
there are no free variables-the result is dependent 
on the function's formal parameters only-a 
purely functional style with no use of global data. 
This means that time functions can be bound or 
combined independent of the context in which 
they are actually used. In contrast, the ACF defini- 
tion of oscillator has a reference to the free 
variable S (in fact, it can refer to any of the envi- 
ronment variables). Since this variable, in this case 
start-time S, can change depending on the context, 
the expression can likewise yield different results 
in different contexts. This is an imperative style, 
using state and assignment. In ACF, time func- 
tions must be defined in the context where they 
are actually used; one cannot, for example, ab- 
stract from them in one context but use them in 
another. In a functional language, one would ex- 
pect the expression shown in Figure 14a to have 
the same semantics (i.e., graphical output) as those 
shown in Figures 14b and 14c, since it is a prop- 
erty of such a language that a name can only be as- 
sociated with a value once. This property is called 
referential transparency. It is considered a severe 

Figure 14. Musical objects 
parameterized with time 
functions as expressions, 
and their graphical output 
as generated by the mi- 
cro-versions of ACF and 
GTF, respectively (where 
they differ). A sequence of 
two notes separated by a 
rest and its identical out- 

put in both ACF and GTF 
is shown in (a); abstrac- 
tion from the pitch pa- 
rameter and its different 
output in ACF and GTF in 
(b); using local binding 
for the expression in (a) 
and its output in ACF and 
GTF is shown in (c). 

(seq (note (oscillator 62 1 .5) 1 1) 
(pause .5) 
(note (oscillator 62 1 .5) 1.5 1)) = 

64- 

63-_ 

62 

61- 

60- 

(a) 
0 i I 0 1 2 3 

(a-musical-object (oscillator 62 1 .5)) = 

64- 

63- 

62- 

61- 

(b) 

64 

62 

61- NM~c 
60- 60- 

0-{ 2 I I - 
I I I 0 I --- I 2 3 

0 
1 2 3 

(let ((vibrato (oscillator 62 1 .5))) 
(seq (note vibrato 1 1) 

(pause .5) 
(note vibrato 1.5 1))) =) 

64 

63 

62 

_ _ _ l61 

64 

63 

62 

61 

(c) 

N Mrc 
60- . 60- 

o ACF] 3 03 

loss when this property does not hold (Stoy 1977); 
for example, we can no longer be certain that f (x) - 

f (x) is zero. Thus, reasoning about such programs 
becomes much harder because the whole mecha- 
nism of reasoning (the lambda calculus) is lost. In 
some cases it is important to drop this property, 
for example, in a non-deterministic programming 
style, but to give it up so early, at the fundamen- 
tals of what could become a basis for a representa- 
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Figure 15. Using a GTF- 
specific language con- 
struct to attach a time 
function to the whole se- 
quence (instead of to each 

individual note) to obtain 
the same result as the ex- 
pression in Figure 14c 
given by ACF. 

Figure 16. Transforming 
the constant pitch of a 
note of duration 1 with a 
linear interpolating ramp, 
resulting in a glissando 

that starts at 64 and ends 
at 63, which produces 
identical output in ACF 
and GTF. 

; GTF-specific 
(with-attached-gtfs ((vibrato (oscillator 62 1 .5))) 

(seq (note vibrato 1 1) 
(pause .5) 
(note vibrato 1.5 1))) = 

(trans (ramp 1 0) (note 63 1 1)) == 

64- 

63- 

62- 
64 

63 

62 

61 

60 

61- 

60- 

0 1 2 

tional system for music, seems to be a mistake. 
(Note that referential transparency is not a prop- 
erty of Lisp itself, since it combines functional 
with imperative language constructs.) 

Since the ACF systems lack three central as- 
pects of a functional language-a name is only 
once associated with a value (referential transpar- 
ency), functions can be treated as values (first- 
class objects), and there are no side effects-we 
would not consider Arctic, Canon, Fugue, and 
Nyquist to be functional languages. 

"redirected" time functions to the places where 
they were mentioned in the expression. 

With the attach-gtf construct, linking a time 
function's start and duration parameters to musical 
objects or values is generalized, i.e., time functions 
can be linked to any musical object, independent 
time point, or time interval. While the latter two 
situations are supported in ACF, time functions 
cannot be linked to musical objects. This is a sec- 
ond major difference between the two formalisms 
(More examples based on this difference will be 
given below in the section on Flexibility). 

Attaching Time Functions to Musical Objects 

Independent of these representation language de- 
sign issues, we sometimes desire the behavior ex- 
hibited by ACF, in the sense that both time 
functions should refer to the same start time, as if 
they were linked to the whole object, instead of 
the individual notes. To do this properly, without 
conflicting with the referentially transparent let 
in Lisp, we need to introduce a new construct that 
is syntactically different. The macro with-at- 
tached-gtfs is an example of a construct provid- 
ing such alternative semantics (see Figure 15 for 
an example) and the micro-version source file for 
the definition. It turns the expression in its body 
into a musical object generator, attaches the time 
functions mentioned to the start time and dura- 
tion of the whole object (instead of using the start 
times and durations of the individual components, 
as is the default case), and communicates these 

Modularity 

Before we continue the comparison, as an exercise to 
the reader, try to decide whether the following two 
transformations should have a similar or different re- 
sult in ACF and GTF: first, a transposition of a note 
by a declining glissando of a semitone that is then 
made twice as long; and second, a transposition of a 
note with the same declining glissando that was first 
made twice as long. This means, in Lisp, is 

(stretch 2 
(trans (ramp 1 0) 

(note 63 1 1))) 

the same as 

(trans (ramp 1 0) 
(stretch 2 

(note 63 1 1)))? 
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Figure 17. Transforming 
the constant pitch of a 
note of duration 2 with a 

linear interpolating ramp 
yields a different result in 
ACF than in GTF. 

Figure 18. A sequence of 
two notes with different 
duration, separated by a 
rest, whereby each pitch 
attribute is associated 

with the same ramp time 
function. This produces a 
different output in ACF 
than in GTF. 

(trans (ramp 1 0) (note 63 2 1)) =* 

(seq (note (ramp 64 62) 1 1) 
(pause .5) 
(note (ramp 64 62) 1.5 1)) => 

64 

63 

62 

61 

6C 

64- 

63- 

62- 

61- 

1- 

The answer will be given below. We will first 
look at a simpler sub-example, shown in Figure 16. 
In this case, the pitch of the note is transposed 
with a descending linear ramp, adding values to 
the note's constant pitch. Both ACF and GTF pro- 
duce the same output. 

However, when the note is made twice as long, 
by giving it duration 2, in ACF the shape of the 
ramp does not change, while in GTF it stretches 
along with the note's duration, i.e., the pitch of the 
note still starts at 64 and ends at 63 (see Figure 17). 

This is not a bug, but a fundamental language- 
design decision. The difference in behavior is 
caused by what, again, seems to be a small differ- 
ence in the two time-function definitions. In ACF, 
at define time a time function A(t) is "instanti- 
ated." It has access to the formal parameters of 
ramp and the implicit parameters of the transfor- 
mation environment (S and F; see Equation 5 be- 
low). In GTF (Equation 6), ramp evaluates to a 
function of start time, duration, and time (i.e., A(s, 
d, t)). This definition is independent of the trans- 
formations acting on the objects it might be linked 
to. Note that stretch factor F is not mentioned in 
Equation 6, while it is in Equation 5. 

ACF: ramp(from, to, d)- A(t) from + - (to - from) (5) Fd 

GTF: ramp(from, to) = A (s, d,t) from + - (to - from) (6) d 

Furthermore, in ACF ramp has an extra param- 
eter named duration (d) that must be explicitly 
communicated to the time function, while in 
GTF, in the default case, the time function is 

60o 1 2 3 

64 

63- 

62- 

61- 

60- --- 

O^i1 2 3 

given the duration of the object that it is used for. 
So, to obtain the same output in ACF as in GTF 
for this example, ramp must be explicitly in- 
formed about the duration of the object it is used 
for (duration is underlined): 
;;; ACF-specific 
(trans (ramp 1 0 2) (note 63 2 1)) 

All functions of time in the ACF systems have 
this optional duration parameter (with the default 
being 1.0 sec). However, Arctic (Dannenberg, Mc- 
Avinney, and Rubine 1986) elegantly works around 
this problem by introducing normalized durations- 
all time functions and behaviors must be explicitly 
stretched to obtain the desired duration. Another, 
more elaborate example is shown in Figure 18. 

Here as well, to obtain the same output in ACF 
as in GTF, the durations of the individual notes 
have to be explicitly communicated to every func- 
tion of time (duration is underlined): 

;;; ACF-specific 
(seq (note (ramp 64 62 1) 1 1) 

(pause .5) 
(note (ramp 64 62 1.5) 1.5 1)) 

Finally, to come back to the question stated in 
the beginning of this section with regard to the ef- 
fect of the order of applying transformations, Fig- 
ure 19 shows that ACF and GTF give different 
results-for reasons just described. 

The difference of having time functions that can 
be attached to musical objects (like in GTF), and 
time functions that are independent entities and 
are also sensitive to time transformations (as in 
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Figure 19. How order af- 
fects applying a trans 
and stretch transforma- 
tion to a note. Stretching 
a transposed note gives 

the same result in ACF 
and GTF (a); but transpos- 
ing a stretched note gives 
a different result in ACF 
and GTF (b). 

Figure 20. Sequence of 
two notes with a time 
function locally bound to 
the variable glissando, 
and its differing output in 
ACF and GTF. 

(stretch 2 (trans (ramp 1 0) (note 63 1 1))) = 

64 

63 

62- 

61- 

60- 

0 1 3 

(a) 

(let ((glissando (ramp 64 63))) 
(seq (note glissando 1 1) 

(pause .5) 
(note glissando 1.5 1))) =) 

64- 

63 

62 

61 

60- 

0 

(trans (ramp 1 O) (stretch 2 (note 63 1 1))) = 

64. 

63- 

62- 

61- 61- 

60- 60- 

6oACF i 2 3 0 1 2 3 

(b) 

ACF), indicates an important difference in modu- 
larity between the two formalisms. In GTF, time 
functions and transformations are orthogonal; the 
definition of one can be changed or extended with- 
out influencing the workings of the other. In ACF, 
time functions and transformations interact (for 
example, time functions are communicated a 
stretch factor-a time-transformation parameter). 
The issue of orthogonality will become crucial 
when the language is extended with, for example, 
time-varying time transformations (i.e., tempo or 
event-shift transformations using timing func- 
tions), because all behaviors must be modified to 
be able to work with these extensions. 

Flexibility 

Next, consider the output of the glissando ex- 
ample in Figure 20. For the same reasons as de- 
scribed for the example in Figure 14c, ACF and 
GTF give different results. 

However, the point should be made here that 
despite the characteristics of a specific language, 
one sometimes wants to express one and some- 
times the other behavior, i.e., time functions that 
are dependent or independent of musical objects. 
In GTF, the semantics of the ACF example can be 
obtained by defining a linear ramp that is indepen- 
dent of the duration of the object it is attached 
to-an independent-ramp (see Figure 21a). 

But the independent-ramp in GTF is not the 
same as ramp in ACF. It still uses the start time of 
the object to which it is applied. While the time 
function constructor has a fixed decline/incline, it 
always starts at the same value at the object's 
start time (see Figure 21b). This is another behav- 
ior that might be preferable in some musical situa- 
tions. 

Yet another alternative is shown in Figure 21c. 
A ramp is linked here to the whole object, stretch- 
ing along with its duration, such that it always 
starts at 64 and ends at 63. 

The general point is that the issue is not decid- 
ing on correct semantics, but, instead, indicating 
how much flexibility we need to express a multi- 
tude of musically viable situations. Furthermore, 
the examples above make use of very simple time 
functions-without mechanisms to compose new 
time functions from existing ones, they will re- 
main trivial examples. It is essential that we can 
abstract from them, building more musically real- 
istic functions out of simpler ones that are well 
understood. As an example, assume we want to 
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Figure 21. Three GTF-spe- 
cific examples of alterna- 
tive ways to link a time 
function to musical ob- 
jects. Attaching a linear 
ramp with its own inde- 
pendent duration (its 
third argument) to the 
whole sequence (identical 
to the output in ACF for 
the expression shown in 
Figure 20 for ACF) (a); pa- 

rameterizing the indi- 
vidual notes with a ramp 
independent of the dura- 
tion of the object it is 
used for (it starts at 64 for 
every note, but then has a 
fixed decline) (b); and at- 
taching a ramp to the 
whole sequence, resulting 
in a glissando over the en- 
tire object starting at 64 
and ending at 63 (c). 

Figure 22. Output of the 
user-defined function ex- 
ample that links a com- 
posite time function, 
constructed from a ramp 
starting at 64 and ending 
at 63 over the duration of 
the whole sequence, and 
an oscillator attached to 
each individual note (a). 

It displays the correct be- 
havior when stretched as 
a whole: the glissando is 
compressed (but still 
starts at 64 and ends at 
63), while the vibrato 
component drops some 
periods, depending on the 
new durations of the indi- 
vidual notes (b). 

; GTF-specific 
(with-attached-gtfs 

((glissando (independent-ramp 64 63 1))) 
(seq (note glissando 1 1) 

(pause .5) 
(note glissando 1.5 1))) = 

63- 

62- 

61- 

60- 

(a) OdTF11 2 3 

; GTF-specific 
(let ((glissando (independent-ramp 64 63 1))) 

(seq (note glissando 1 1) 
(pause .5) 
(note glissando 1.5 1))) = 

64 

63 

62- 

61- 

60- 

0-GwF i 2 3 

; GTF-specific 
(with-attached-gtfs ((glissando (ramp 64 63))) 

(seq (note glissando 1 1) 
(pause .5) 
(note glissando 1.5 1))) = 

62- 
62- 

61- 

60- 

o0 GTF|l 3 

(a) 

(stretch .5 (example)) =* 

64: 
63- 

62- 

61- 

60- 

o0 I 1 3 
(b) 

define a time function that embodies glissandi 
with a little vibrato, a simplistic first step in the 
direction of expressing the musical knowledge 
used in singing. This is shown in Figure 22. We 
can compose a glissando with a vibrato by adding 
the results of a ramp that is linked to the whole 
musical object, and an oscillator time function 
that is linked to the individual components of the 
musical object (all this without having to refer to 
the internal structure of a-musical-object). 
;;; GTF-specific 
(defun example () 

(with-attached-gtfs ((glissando (ramp 64 63))) 
(let* ((vibrato (oscillator 0 2 .5)) 

(pitch (time-fun-+ glissando vibrato))) 

(a-musical-object pitch)))) 

Honing 

(example) => 
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Programs Versus Data 

In ACF, all behaviors and transformations are pro- 
grams, and the output is generated as a side-effect. 
Functions of time are also, in a sense, behaviors 
that can inspect the transformation environment 
(In Arctic there is indeed no distinction between 
time functions and behaviors; all behaviors are, in 
fact, functions of time). This implies that if one 
wants to add a MIDI play function or a graphical 
extension, all behaviors must be modified-a te- 
dious job in a large-scale system (see Dannenberg, 
Fraley, and Velikonja 1991). In GTF, all objects of 
the language (musical objects, transformations, 
and time functions) are first-class objects, as they 
deliver data structures and can be bound and 
passed as arguments. They can therefore be in- 
spected by other programs or serve as input to 
other systems (for example, graphics- or sound- 
generation systems). 

This data-versus-programs distinction also has 
an important influence on the expressiveness of 
the representation itself. For instance, in the case 
of a language with musical objects as procedures, 
there is no access to these objects after definition. 
This forces all communication from, for example, 
time functions to musical objects and vice versa, 
to be realized at define time. Representation prob- 
lems that can be characterized as based upon "bot- 
tom-up" or "lateral" communication, dependent 
on the accessibility of musical objects after defini- 
tion, cannot be represented in such languages (see 
the "compressor problem" and "transition prob- 
lem" in Desain and Honing 1993). 

Conclusion 

In this study, two formalisms for describing func- 
tions of time were compared using micro-version 
programs as a means to gain insight in their work- 
ings. Although both systems provide a solution to 
the vibrato problem-in that they acknowledge 
the need for more time information besides actual 
time-several important semantic differences were 
indicated. These differences were shown to be in- 
trinsic to the design of the two systems and in the 

way they support notions such as abstraction, flex- 
ibility, and extensibility. 

This article is restricted to the vibrato problem, 
which reflects just a minor aspect of a representa- 
tional system for music. Transformations and mu- 
sical objects-their construction, structuring, and 
use-are not discussed. Other, more pragmatic is- 
sues, including efficiency and real-time possibili- 
ties, are also left untouched. The aim, though, is 
to achieve a true understanding of what seems to 
be irrelevant differences between two relatively 
simple formalisms. This understanding is essen- 
tial, for instance, in choosing a formalism as a fun- 
damental building block of a more elaborate 
representation system for music. Finally, the vi- 
brato problem is a key example of the kind of ex- 
pressive power that we need for the next 
generation of synthesizers that allow high-level 
musical control; for example, synthesis methods 
based on physical models (Smith 1992), or revital- 
ized additive synthesis (Serra and Smith 1990). 
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