
The Vibrato Problem: Comparing Two Solutions
Author(s): Henkjan Honing
Source: Computer Music Journal, Vol. 19, No. 3 (Autumn, 1995), pp. 32-49
Published by: The MIT Press
Stable URL: http://www.jstor.org/stable/3680653
Accessed: 10/10/2008 12:08

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=mitpress.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music
Journal.

http://www.jstor.org

http://www.jstor.org/stable/3680653?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=mitpress

Henkjan Honing
Institute for Logic, Language, and Computation
(ILLC)
Faculty of Mathematics and Computer Science
University of Amsterdam
Spuistraat 134
NL-1012 VB Amsterdam, The Netherlands
Honing@FWI.uva.nl

In discussing the formalization of musical knowl-
edge, this article describes an important music-
representation issue, the "vibrato problem." This
problem characterizes the need for a knowledge
representation that can reflect both discrete and
continuous aspects of music at an abstract and
controllable level. Two formalisms of functions of
time that support this notion are compared: the
approach used in the Canon family of computer
music composition systems (Dannenberg,
McAvinney, and Rubine 1986; Dannenberg 1989;
Dannenberg, Fraley, and Velikonja 1991), and the
Generalized Time Functions (GTF) Formalism of
Desain and Honing (1992a, 1993). The comparison
is based on a simplified version of Dannenberg's
Arctic, Canon, and Fugue systems (referred to as
ACF), obtained from the original programs using
an extraction technique, and a simplified version
of the GTF system that was made syntactically
identical to ACF. In general, both approaches solve
the vibrato problem, though in very different
ways. The differences are explained in terms of ab-
straction, modularity, flexibility, transparency,
and extensibility-important issues in the design
of a representational system for music (Honing
1993b).

Aspects of Musical Knowledge

In music representation, a distinction can be made
between discrete, symbolic representations (such
as music notation) and continuous, numerical rep-
resentations (as audio or control signals) (see, e.g.,

Computer Music Journal, 19:3, pp. 32-49, Fall 1995
? 1995 Massachusetts Institute of Technology.

The Vibrato Problem:

Comparing Two

Solutions

De Poli, Piccialli, and Roads 1991). In common
practice Western music notation can represent
symbolic constructs such as notes, rests, accents
or meter, but it lacks ways of describing the con-
tinuous aspects of music (for example, the indi-
vidual shaping of a note), other than using simple
symbols or words such as tremolo or sforzato in
the score. By contrast, an audio-signal representa-
tion allows a "complete" description of a piece of
music, with all its continuous aspects. It includes,
for example, the instrument's sound quality, the
room acoustics, etc. This type of representation
does not have symbolic characteristics, however;
we cannot (at least not directly) derive from it the
different streams or voices, the beginning of a
note, or the metrical structure.

A similar distinction can be found in computer
music systems, with discrete, note- and event-ori-
ented MIDI systems at one end, and continuous,
signal-oriented, Music V-like systems at the other.
Sometimes one type of representation is more ap-
propriate than the other, but a powerful represen-
tation system for music must integrate both
aspects. To give an example, one might want to
describe how certain parameters change continu-
ously over time, with respect to specific parts or
levels of the discrete structure. The representation
system must incorporate specific knowledge on
how these parameters change or behave under
transformation of that structure (for instance, how
a rhythmic fragment's particular kind of phrasing
depends on its duration). We need to communicate
information between the continuous and discrete
aspects of a representation, passing information
from the discrete components (for example, notes)
to the continuous components (such as control
functions), and vice versa. The "vibrato problem"
(Desain and Honing 1992a) is a relatively simple

Computer Music Journal 32

representational problem, characterizing the kind
of control that is needed.

The Vibrato Problem

In Figure la, a continuous (control) function is
used for the pitch attribute of a discrete object-a
note. The problem revolves around what should
happen to the shape or form of the pitch contour
of a vibrato when it is used for a longer note, or,
equivalently, when the note is stretched. In the
case of its interpretation as a simple sinusoidal vi-
brato, some extra vibrato cycles should be added
to the pitch envelope (see the first frame in Figure
lb)-when interpreted as a sinusoidal glissando,
the pitch contour should be elastically stretched
(see the second frame in Figure lb). However, all
kinds of intermediate and more complex behaviors
should be expressible as well (see third and fourth
frames in Figure lb). A similar kind of control is
needed with respect to the start time of a discrete
object (see Figure lc): What should happen to the
contour when it is used for an object at a different
point in time, or, equivalently, when the note is
shifted? Again, a large range of possible behaviors
can be thought of, depending on the interpretation
of the control function, i.e., the kind of musical
knowledge embodied-attack-transients, indepen-
dent or synchronized vibrati, or other functions of
time (see Figure ld).

To get the desired isomorphism between the
representation and the reality of musical sounds, a
music representation language must support a
property that we will call "context-sensitive poly-
morphism." "Polymorphism" for the fact that the
result of an operation (like stretching) depends on
its argument type (e.g., a vibrato time function be-
haves differently under a stretch transformation
than a glissando time function), "context-sensi-
tive" because an operation is also dependent on
the lexical context in which it is used. As an ex-
ample of the latter, interpret the situation in Fig-
ure 1c as two notes that occur in parallel, with one
note starting a bit later than the other. The behav-
ior of this musical object under transformation is

now also dependent on whether a particular con-
trol function is linked to the object as a whole
(i.e., to describe synchronized vibrati; see second
frame in Figure ld), or is associated with the indi-
vidual notes (e.g., an independent vibrato; see first
frame in Figure ld). Specific language constructs
are needed to made a distinction between these
different behaviors.

Note that the vibrato problem is, in fact, a gen-
eral issue in temporal knowledge representation,
and is not restricted to music. In animation, for
example, we could use similar representation for-
malisms. Think, for instance, of a scene in which
a comic-strip character walks from point A to
point B in a particular way. When one wants to
use this specific behavior to have the character
walk over a longer distance, should the character
make more steps (cf. vibrato) or take larger steps,
i.e. should it start running (cf. glissando)?

Dannenberg (1989) describes the "drum roll
problem"-the discrete analogy of the vibrato
problem-which in the case of stretching should
be extended by adding more drum hits, instead of
slowing down the rate of the drum roll. Several
systems are based on this idea: the Arctic system
(Dannenberg, McAvinney, and Rubine 1986), the
Canon score language (Dannenberg 1989), the
Fugue composition language (Dannenberg, Fraley,
and Velikonja 1991), and Fugue's latest incarna-
tion, Nyquist (Dannenberg 1993). Although these
systems differ in several aspects, they all use a
transformation system similar to the one proposed
in Arctic. This shared mechanism of Arctic,
Canon, and Fugue (and Nyquist) will be referred to
as the ACF transformation system.

The core of the observations in this study are
based on analyzing the behavior of simplified ver-
sions of ACF and GTF, extracted from the original
code using programming language transformation
techniques (e.g., Friedman, Wand, and Haynes
1992). This technique of extraction (Honing
1993a), making a small program from a larger sys-
tem, is an attractive alternative to rational recon-
struction (e.g., Richie and Hanna 1990). We will
refer to such a simplified program as micro-version
or microworld. It consists of a relatively complete

Honing

I

33

Figure 1. The vibrato
problem. First, what
should happen to a con-
trol-function contour
when used for a discrete
musical object with a dif-
ferent length? For ex-
ample, a sine wave

T

control function is associ-
ated with the pitch at-
tribute of a note-vibrato
(a); possible pitch con-
tours for the stretched
note, depending on the in-
terpretation of the origi-
nal contour, are shown in

(b). Second, what should
happen to the pitch-con-
tour form when used for a
discrete musical object at
a different point in time
(c)? Possible pitch con-
tours for the shifted note
are shown in (d). There

is, in principle, an infinite
number of solutions, de-
pending on the type of
musical knowledge em-
bodied by the control
function.

T

*r54

stretch duratio
y

(a) m e -...........

tine ?

1Tl
U

(b)

etc.
time -*

Computer Music Journal

shift onset

(c)
time -

T

time -e

etc.

(d)

I I

34

Figure 2. Examples of ba-
sic and compound musi-
cal objects in the ACF
family of languages and
GTF. Pitches are given as
MIDI key numbers, dura-
tion as seconds, and am-
plitude on a 0 to 1 scale.
A note with pitch 60, du-

set of essential objects and mechanisms, and at the ration 1, and maximum
same time it is small and easy to comprehend.

(note 60 1 1)

amplitude (a); a sequence
of a note, a rest, and an-
other, shorter note (b);
and three notes in paral-
lel, each with different
pitches and amplitudes
(c). The height of each
note bar is proportional to
the corresponding note's
amplitude.

Shared Framework of ACF and GTF

First, we will describe the set of musical objects,
time functions, and their transformation that is
shared by the ACF and GTF micro-versions. The
full Lisp source code of the micro-versions is avail-
able by Internet ftp from the Computer Music
Journal archives; it can be found in the directory
with the uniform resource locator (URL) ftp://
www-mitpress.mit.edu/Computer-Music-Journal/
Code/ACF_GTF. Both micro-versions use the
Canon syntax (Dannenberg 1989). On some points
the ACF systems differ among themselves, this
will be noted where appropriate. The examples
will be presented with their graphical output, us-
ing the micro-versions mentioned above.

In general, both the ACF and GTF systems pro-
vide a set of primitive musical objects (in ACF
these are referred to as "behaviors"), and ways of
combining them into more complex objects. Ex-
amples of basic musical objects are note-with
parameters for duration, pitch, amplitude, and
other attributes that depend on the synthesis
method used, and pause-a rest with duration as
its only parameter. These basic musical objects
can be combined into compound musical objects
using the time structuring constructs seq (for se-
quential ordering) and sim (for simultaneous or
parallel ordering). Some examples are given in Fig-
ure 2, which shows simple pitch-time diagrams.

New musical objects can be defined using the
standard procedural abstraction (function defini-
tion) of Lisp, for example, the following Lisp ex-
pression defines a function named melody that
consists of three sequential notes. Figure 3 shows
an example of its use in a simplified pitch-time
diagram where the thickness of the "note" corre-
sponds to its loudness.

;;; define a function
(defun melody ()

;;; that produces a sequence
;;; of three notes given as

T
. 64

c' 63

62-

61-

60

(
(a) 2 e -3

time -

(seq (note 62 1 1)
(pause 1)
(note 61 .5 1)) =

64

63

62

61

60
U

(b)

(sim (note 62 1 .2)
(note 61 1 .8)
(note 60 1 .4)) =

64-

63-

62-

60 2 3 O 1 2 3 (c)

;;; (note pitch duration amplitude)
(seq (note 60 .5 1)

(note 61 .5 1)
(note 62 .5 1)))

Both ACF and GTF provide a set of control func-
tions-functions of time-and ways of combining

Honing

I I

(

35

Figure 3. Pitch vs. time
diagram of a sequence
that consists of a user-de-
fined musical object (a
three-note melody) played
twice.

Figure 4. Two examples of
a note that is parameter-
ized with basic time func-
tions given as its pitch
values. An interpolating
linear ramp with start

and end values as param-
eters (a), and a sine wave
oscillator with offset,
modulation frequency,
and amplitude as param-
eters (b).

(seq (melody) (melody)) = (note (ramp 60 61) 1 1) =>

64

63

64-

63-

62-

61-

60I

62

61

60
I I I
1 2 3

them. We will use two basic time functions in this
article: a linear interpolating ramp function, and
an oscillator that generates a sine wave.

There are alternative ways of passing time func-
tions to musical objects. One method is to pass a
function directly as an attribute to, for instance,
the pitch parameter of a note (see Figure 4). An al-
ternative method is to make a musical object with
simple default values and to obtain the desired re-
sult by transformation. In one context the first
method might be more appropriate, in another
context, the latter. The following examples show
the equivalence between specification by means of
transformation and by parameterization (their out-
put is as shown in Figure 4a and 4b, respectively):
;; specification by transformation
;; of a ramp glissando
(trans (ramp 0 1) (note 60 1 1)) =
;;; specification by parameterization
(note (ramp 60 61) 1 1))

;; specification by transformation
;;; of a vibrato using an oscillator
(trans (oscillator 0 1 1) (note 61 1 1)) =

;;; specification by parameterization
(note (oscillator 61 1 1) 1 1))

Note that, while specification by means of
transformation is supported in both ACF and GTF,
specification by means of parameterization is only
available in Arctic and GTF.

Finally, both systems support different types of
transformations. As an example of a time transfor-
mation, stretch will be used (see Figure 5a). This
transformation scales the duration of a musical ob-

(note (oscillator 61 1 1) 1 1) =*

64

63

62

61

6C

(b)
0 I I
0 1 2 3

ject (its second parameter) by a given factor (its
first parameter). As examples of attribute transfor-
mations we will use one for pitch (named trans),
and one for amplitude (named loud). These trans-
formations take constants (see Figure 5b, 5c, and
5d) or time functions (see Figure 5e and 5f) as their
first argument, and the object to be transformed as
their second argument.

The ACF Transformation System

A central concept in the ACF systems is the notion
of a transformation environment. This environ-
ment, or context, is implemented as a number of
global variables that are dynamically bound and
serve as implicit parameters to every "behavior"
(i.e., musical object). Behaviors, transformations,
and time functions can, in principle, inspect, ig-
nore, or modify these variables. They are proce-
dures that know how to change (or "behave") in

response to, for example, a stretching or transposi-

Computer Music Journal

(a)

:-
[-

36

Figure 5. Examples of
transformations on musi-
cal objects: a time trans-
formation-stretch (a);
a constant amplitude
transformation-loud

(b); and a constant pitch
transform ation-trans
(c). A few of the many
possible nestings of these
two transformations are
shown: a transposed quiet

melody (d) and a time-
varying pitch transforma-
tion (e); and a
time-varying amplitude
transformation (f).

(stretch 2 (melody)) =~

64-

63-

62-

61-

601
0

(trans 2 (loud -0.4 (melody))) =*

64

63

62

61

60

Ul

(d)

(loud -0.4 (melody)) => (trans (ramp 0 2) (note 60 1 1)) =>

I , I

} 1 2 3

(trans 2 (melody)) =X

64

63

62

61

60

(f)

(loud (ramp 0 -1) (note 62 1 1)) =

64

63

62

61
Eu.

60
I I I

0 1 2 3
I I I

0 1 2 3

tion transformation, and produce continuous sig-
nals (e.g., graphical output or MIDI) as a side effect.
The ability of behaviors to adapt themselves-in
their own specific way-to changes of the values of
these environment variables is the basis of the ACF
solution to the vibrato problem; for example, a vi-
brato behavior will behave differently in an envi-
ronment modified by a stretch transformation
than will a glissando behavior.

While dynamic binding is a popular program-
ming technique, it often makes a proper under-
standing of the resulting execution very difficult.
To get a precise insight in how ACF makes use of
this technique, we first concentrate on the special
variables in the environment that have to do with
time, and take a simple note behavior as an ex-
ample. We will use diagrams to illustrate the spe-
cific communication of these implicit parameters

Honing

(a)

64-

63-

62

61T

60

(b)
N I I I

3 1 2 3

64-

63-

62-

61-

60-

(e)

(c)

(

37

Figure 6. The variable
binding and scope-of-ref-
erence diagram for the ex-
pression (note p d).
The symbol -- is used for
assignment, + for addi-
tion, and x for multiplica-
tion; italics are used for
functions, bold type for
formal parameters, bold

s 0

not 1
note

names above a frame in-
dicate an operator or
transformation, and
curved arrows emphasize
references. Although
note, in reality, has more
than two parameters, in
these diagrams it is suffi-
cient to look at pitch p
and duration d only.

Figure 7. Binding and
scope diagram for the ex-
pression (seq (note po
do) (note p, dl)), ase-
quence of two notes. See
Figure 6 caption for sym-
bol explanations.

Figure 8. Binding and
scope diagram for the ex-
pression (sim (note po
do) (note p, dl)), two
notes in parallel. See Fig-
ure 6 caption for symbol
explanations.

I -

start +- S
duration +- d x F

return(start + duration)

and the dynamic binding scheme used. In the fig-
ures that illustrate variable binding, the symbol *-
is used for assignment, + for addition, and x for
multiplication. Italics are used for functions, bold
type for formal parameters, bold names above a
frame for an operator or transformation, and
curved arrows emphasize references.

There are two implicit parameters in the envi-
ronment that have to do with time. One holds the
current start time (called time in the ACF sys-
tems, but here referred to as start or s, to distin-
guish it from actual time or "now"), the other a
duration stretch factor (called dur in Arctic and
Canon, and stretch in Fugue; we will use
stretch or F, to avoid confusion with duration).
The global environment is initially set with S
(start time) as 0 and F (stretch factor) as 1 (see
Figure 6). A note procedure, evaluated in this en-
vironment, derives its start time and its stretched
duration (i.e., product of the note's formal param-
eter d, for duration, and F) from these implicit pa-
rameters found in the environment in which the
note is evaluated. The body of note (indicated
with an ellipsis in Figure 6) may refer to these
time parameters. Note that behaviors return their
end time (or logical stop time, as it is referred to
in the ACF systems) for use by the time structur-
ing behaviors seq and sim.

In Figure 7, an example of the seq behavior is
shown. It modifies the environment and as a result
(using dynamic binding), influences the behavior
of note. The returned end time, after evaluating

Figure 7

S +- 0

F - 1
aim \

eo - noteo

start +- S
duration - do

return(start +

e1 +-noteI /
start +- S
duration v- di

return(start +

return(max(eO, el))

Figure 8

Computer Music Journal

X F

duration)

x F

duration)

I

\

38

Figure 9. Binding and
scope diagram for the ex-
pression (stretch n
(note p d)), a note
made n times as long. See
Figure 6 caption for sym-
bol explanations.

Figure 10. Binding and
scope diagram for the ex-
pression (trans n
(note p d)), a note
with a pitch transposed
by a constant n. See Fig-
ure 6 caption for symbol
explanations.

S %- 0

Figure 11. Binding and
scope diagram for the ex-
pression (trans (oscil-
lator of a) (note p
d)), a note with a pitch
transposed by a sine wave
time function constructor
with parameters offset,
modulation frequency and
amplitude.

s %- 0
F +- 1
transpose %- 0

trans N

transpose *- n + transpose

note
start <- S
duration <- d x F

pitch +- p + transpose

return(start + duration)

the first note, is used to set the value of s. This
new value is then used when evaluating the next
note, resulting in the notes being ordered (i.e.,
played or drawn) one after the other.

A sim behavior, conversely, will evaluate all its
arguments with the same start time and return the
maximum end time (see Figure 8).

A time transformation in this diagrammatic no-
tation is shown in Figure 9. The stretch transfor-
mation alters the duration stretch factor of the
enclosing environment by multiplying it with a
factor. As a result, the note's duration will be n
times as long for a stretch factor of n.

The next example is an attribute transformation
(Figure 10). The trans transformation is used for
transposing the pitch of behaviors (if they have
such an attribute). The special variable trans-
pose is therefore introduced in the environment
as illustrated in Figure 10. The note behavior adds
the value of transpose to its own explicit pitch
(the formal parameter p). For every other trans-
formable attribute (e.g., loudness, channel, or ar-
ticulation factor), such a special attribute variable
is added to the environment.

Finally, in Figure 11 a time-varying transforma-
tion is shown in the same diagrammatic way for
comparison. In this example, an oscillator
function is an argument to the trans transforma-
tion. Instead of adding a constant value to the
value of transpose, a new expression is built
from the result of evaluating the oscillator
constructor and the value of transpose in the en-

Figure 10

S %- 0

F +- 1

transpose +- 0

tranS \

transpose - oscillator

\t ~ ~^return ((t)o+asin21f(t-S))

\ @ A
transpose

note

start +- S

duration v- d x F

pitch v- p D transpose

return(start + duration)

Figure 11

closing environment (here it is 0, but could be a
time function as well). The note procedure body
(i.e., the ellipsis in Figure 11) can refer to this
"composed" pitch value. Note that oscillator
is actually a time function constructor, that is, it
returns a time function. Lambda expressions are
used to refer to these anonymous time functions.
They are of the form A(x1, ..., xn)e, where x1, ..., xn
are parameter names and e some expression.

Honing

I

x

39

Implementation The GTF Formalism

The technique used to make nesting of operations
on different attributes possible, and to communi-
cate the appropriate values of the environment vari-
ables to the behaviors, is dynamic binding. Time
functions, behaviors, and transformations can refer
to free, but invisible (at the user-level) environment
parameters. It simplifies procedure-call by using
implicit parameters that communicate information
to the behaviors (start, stretch, transpose,
etc.), and, therefore, mainly cleans up the syntax
(i.e., syntax abstraction). (Note that the transforma-
tions in ACF are coded as Lisp macros, not as func-
tions.) However, since these environment
parameters play a central role in the behavior of the
language, the user must be aware of its workings
when using or extending the language, so there is
no real abstraction from these implementation de-
tails (see Abelson and Sussman 1985).

Furthermore, a particular kind of delayed evalu-
ation is used. Symbolic expressions, describing
functions of time, are combined into new expres-
sions that are not yet evaluated. Only at run-time
(for example, when the picture is generated) will
these expressions be evaluated, and return a fully
transformed function of time. This mechanism
and the functions of time are made explicit in the
ACF microworld using a time function combinator
(shown as ? in the figures).

Equation 1 shows an example of a time function
constructor (oscillator) that returns an anony-
mous function of time k(t). Its behavior is described
by an expression that has access to time t, the for-
mal parameters of the oscillator constructor,
i.e., o (offset), f (frequency), and a (amplitude),
and to S (start time) that is bound to its value in
the enclosing environment (cf. Figure 11).

oscillator(o, f,a) = A(t)o + a sin 2nf(t - S) (1)

The evaluation of, for example, (oscillator 62
1 0.5), will produce a closure that consists of a
function of time k(t) that has bindings to its three
formal parameters (o, f, and a) and to the current
(i.e., define time) value of S (S is not a formal pa-
rameter).

The approach that was taken in Desain and Hon-
ing (1992a, 1993) is that of a mixed representa-
tion-describing those aspects that are best
represented numerically by continuous control
functions, and those aspects that are best repre-
sented symbolically by discrete objects. Together,
these discrete musical objects and continuous con-
trol functions can form alternating layers of dis-
crete and continuous information. For example, a
phrase can be associated with a continuous ampli-
tude function, while consisting of notes associated
with their own envelope functions, which are in
turn divided into small sections, each with its spe-
cific amplitude behavior. The lowest layer could
even be extended all the way down to the level of
discrete sound samples.

With respect to the continuous aspects (the vi-
brato problem), control functions of multiple argu-
ments were proposed-so called "time functions of
multiple times" or generalized time functions
(GTF). These are functions of the actual time, start
time and duration (or variations thereof) that can be
linked to a specific attribute of a musical object.

If we ignore for the moment the dependence of
time functions on absolute start time, they can be
plotted as three-dimensional surfaces; they show a
control value for every point in time, given a cer-
tain time interval (see Figure 12). Similar plots
could be made that show a surface dependent on
start time. A specific surface describes the behav-
ior under a specific time transformation (e.g.,
stretching the discrete object it is linked to). This
surface is shown for a simple sinusoidal vibrato
(Figure 12a) and a sinusoidal glissando (Figure 12b).
In these pictures, the flat triangle-shaped surface
of a constant value should be considered unde-
fined. An extension of the GTF micro-version ex-
plicitly deals with defining reasonable
extrapolations of these functions outside the time
interval of the object they are used for, but this is
beyond the scope of this article.

A vertical slice through such a surface describes
the characteristic behavior for a certain time inter-

Computer Music Journal 40

Figure 12. Two surfaces
showing the values for
generalized time func-
tions as a function of time
and duration (start time
is ignored in this depic-
tion). In the case of a si-
nusoidal vibrato, we add

(a)

more periods of the vi-
brato function for longer
durations (a), whereas for
a sinusoidal glissando,
the function stretches
along with the duration
parameter (b).

Figure 13. A more com-
plex generalized time
function as a function of
time and duration (start
time is ignored in the de-

piction). The appropriate
time function to be used
for an object of a certain
duration is a vertical slice
out of the surface.

(b)

val-the specific time function for a musical ob-
ject of a certain duration, as shown in Figure 13.

Furthermore, there are standard ways of combin-
ing basic GTFs into more complex control func-
tions, using a set of combinators (compose,
concatenate, multiply, add, etc.), or by supplying
GTFs as arguments to other GTFs while the com-
ponents retain their characteristic behaviors. Dis-

crete musical objects (like note and pause) also
have standard ways of being combined into new
ones (e.g., using the time structuring functions S
and P-similar to seq and sim in ACF). To inte-
grate these continuous and discrete aspects, the
system provides facilities that support different
kinds of communication between continuous con-
trol functions and discrete musical objects. For
example, control functions can be passed to attrib-
utes of musical objects either by parameterization
(one passes it directly to an attribute of, e.g., a
note) or by transformation (where the musical ob-
jects have default values for their attributes and
the desired result is obtained by transformation of
the object). Several other paths of communication
are supported as well, for instance, passing control
functions "laterally" between musical objects (i.e.,
to have access to the control functions of the pre-
ceding or succeeding musical objects in a se-
quence, e.g., to represent transitions between
notes) or a "bottom-up" type of communication
where some outer control function is dependent
on the behavior of one or more embedded control
functions (e.g., when defining an overall amplitude
time function that behaves like a compressor).
However, we will not discuss these types of com-

Honing 41

munication here (see Desain and Honing 1993 for
more details).

Implementation

that the user-level syntax is identical to that in
the ACF micro-version.

Comparison

Musical object generators (like note, seq, or sim)
are functions of start time, stretch factor, and an
environment. The latter supports a purely func-
tional notion of environment (Henderson 1980),
and is mainly used to define attribute transforma-
tions in the microworld (see attribute-trans-
form in the GTF micro-version). Other usage is
beyond the scope of this article. Musical object
generators can be freely transformed by means of
function composition, without actually being cal-
culated, using delayed evaluation. These functions
are then only applied to a given start time, stretch
factor, and environment, and return data structure
describing the musical object that, in turn, can be
used as input to a play or draw system. This data
structure could take many forms, as long as it con-
tains the start time and duration of the object and
it is possible to associate GTFs with attributes of
such objects. In the GTF micro-version, an ad hoc
unstructured event-list representation is used for
simplicity-the full system uses a more elegant
set of hierarchical musical objects.

Generalized time functions are functions of
three arguments, start, duration and actual time
(i.e., k(s, d, t)). Equation 2 shows an example of an
oscillator time function constructor that re-
turns such a function (Note that in the case of os-
cillator, the duration parameter d is ignored.)

oscillator(o, f, a) = A(s,d,t)o + asin 2f(t - s) (2)

The interpreter system that, for example, gener-
ates pictures or prints text, will communicate the
start time (s) from the object with whose attribute
the GTF is associated, and sample the resulting
time function (i.e., a slice out of the specific GTF
space; cf. Figure 13) according to the needs of the
output medium.

The micro-version of the GTF system contains
only the objects and mechanisms central to the
current discussion. The naming and order of argu-
ments of the top-level functions is adapted such

As we saw above, in the ACF systems, a time func-
tion is a function of time that has access to vari-
ables representing duration, start, and stretch factor.
In the GTF formalism, a time function is a function
of multiple arguments-start, duration, and actual
time. Both formalisms acknowledge that, next to
absolute time, both start time and duration are
needed to describe appropriate time-varying behav-
ior under time transformation-for example, to be
able to distinguish between a glissando and a vi-
brato. There are, however, several fundamental dif-
ferences between the two formalisms that are not
easily identified at first sight. To explore them, the
syntax of the GTF was made identical to ACF. With
this identical syntax, we can "port" expressions
from GTF to ACF and vice versa, and compare the
(graphical) output-when identical expressions re-
sult in the same graphical output, we know that the
systems have the same semantics.

Referential Transparency

First, let us look at an example of a compound mu-
sical object as shown in Figure 14a. It consists of
two notes in a sequence separated by a rest. Both
notes have an oscillator time function associ-
ated with their pitch attribute, a duration of 1.0
sec and 1.5 sec, respectively, and constant ampli-
tude. The pause has a duration of 0.5 sec. The ex-
pression has identical output in ACF and GTF.

Suppose we want to abstract from this particular
expression. We can do this by making a procedure
(using Lisp function definition) that takes any
time function and communicates it to the pitch
parameter of the notes. This would give us the fol-
lowing expression.

;;; abstract from the pitch parameter
(defun a-musical-object (pitch)

(seq (note pitch 1 1)

Computer Music Journal 42

(pause .5)
(note pitch 1.5 1)))

When we look at the output of this function ap-
plied to the same time function that was used in
Figure 14a, we see that its semantics are different
in ACF and GTF, as is illustrated in Figure 14b. In
ACF, the sine wave extends over the rest, whereas
in GTF the sine wave starts at phase 0 at the be-
ginning of each note. The same thing happens in
the closely related expression shown in Figure 14c
that uses a let binding (the let construct being
useful "syntactic sugar" for function application).
This specific difference in semantics between ACF
and GTF can be explained by having a closer look
at the two definitions of an oscillator time
function in the two formalisms (the equations for
which are repeated below).

ACF: oscillator(o, f,a) = A(t)o + a sin 2;rf(t - S) (3)

GTF: oscillator(o, f, a) = A (s,d,t)o + a sin 2f(t - s) (4)

This seemingly small difference in implementa-
tion has an important effect on the workings of
the systems. In the GTF definition of oscillator
there are no free variables-the result is dependent
on the function's formal parameters only-a
purely functional style with no use of global data.
This means that time functions can be bound or
combined independent of the context in which
they are actually used. In contrast, the ACF defini-
tion of oscillator has a reference to the free
variable S (in fact, it can refer to any of the envi-
ronment variables). Since this variable, in this case
start-time S, can change depending on the context,
the expression can likewise yield different results
in different contexts. This is an imperative style,
using state and assignment. In ACF, time func-
tions must be defined in the context where they
are actually used; one cannot, for example, ab-
stract from them in one context but use them in
another. In a functional language, one would ex-
pect the expression shown in Figure 14a to have
the same semantics (i.e., graphical output) as those
shown in Figures 14b and 14c, since it is a prop-
erty of such a language that a name can only be as-
sociated with a value once. This property is called
referential transparency. It is considered a severe

Figure 14. Musical objects
parameterized with time
functions as expressions,
and their graphical output
as generated by the mi-
cro-versions of ACF and
GTF, respectively (where
they differ). A sequence of
two notes separated by a
rest and its identical out-

put in both ACF and GTF
is shown in (a); abstrac-
tion from the pitch pa-
rameter and its different
output in ACF and GTF in
(b); using local binding
for the expression in (a)
and its output in ACF and
GTF is shown in (c).

(seq (note (oscillator 62 1 .5) 1 1)
(pause .5)
(note (oscillator 62 1 .5) 1.5 1)) =

64-

63-_

62

61-

60-

(a)
0 i I 0 1 2 3

(a-musical-object (oscillator 62 1 .5)) =

64-

63-

62-

61-

(b)

64

62

61- NM~c
60- 60-

0-{ 2 I I -
I I I 0 I --- I 2 3

0
1 2 3

(let ((vibrato (oscillator 62 1 .5)))
(seq (note vibrato 1 1)

(pause .5)
(note vibrato 1.5 1))) =)

64

63

62

_ _ _ l61

64

63

62

61

(c)

N Mrc
60- . 60-

o ACF] 3 03

loss when this property does not hold (Stoy 1977);
for example, we can no longer be certain that f (x) -

f (x) is zero. Thus, reasoning about such programs
becomes much harder because the whole mecha-
nism of reasoning (the lambda calculus) is lost. In
some cases it is important to drop this property,
for example, in a non-deterministic programming
style, but to give it up so early, at the fundamen-
tals of what could become a basis for a representa-

Honing 43

Figure 15. Using a GTF-
specific language con-
struct to attach a time
function to the whole se-
quence (instead of to each

individual note) to obtain
the same result as the ex-
pression in Figure 14c
given by ACF.

Figure 16. Transforming
the constant pitch of a
note of duration 1 with a
linear interpolating ramp,
resulting in a glissando

that starts at 64 and ends
at 63, which produces
identical output in ACF
and GTF.

; GTF-specific
(with-attached-gtfs ((vibrato (oscillator 62 1 .5)))

(seq (note vibrato 1 1)
(pause .5)
(note vibrato 1.5 1))) =

(trans (ramp 1 0) (note 63 1 1)) ==

64-

63-

62-
64

63

62

61

60

61-

60-

0 1 2

tional system for music, seems to be a mistake.
(Note that referential transparency is not a prop-
erty of Lisp itself, since it combines functional
with imperative language constructs.)

Since the ACF systems lack three central as-
pects of a functional language-a name is only
once associated with a value (referential transpar-
ency), functions can be treated as values (first-
class objects), and there are no side effects-we
would not consider Arctic, Canon, Fugue, and
Nyquist to be functional languages.

"redirected" time functions to the places where
they were mentioned in the expression.

With the attach-gtf construct, linking a time
function's start and duration parameters to musical
objects or values is generalized, i.e., time functions
can be linked to any musical object, independent
time point, or time interval. While the latter two
situations are supported in ACF, time functions
cannot be linked to musical objects. This is a sec-
ond major difference between the two formalisms
(More examples based on this difference will be
given below in the section on Flexibility).

Attaching Time Functions to Musical Objects

Independent of these representation language de-
sign issues, we sometimes desire the behavior ex-
hibited by ACF, in the sense that both time
functions should refer to the same start time, as if
they were linked to the whole object, instead of
the individual notes. To do this properly, without
conflicting with the referentially transparent let
in Lisp, we need to introduce a new construct that
is syntactically different. The macro with-at-
tached-gtfs is an example of a construct provid-
ing such alternative semantics (see Figure 15 for
an example) and the micro-version source file for
the definition. It turns the expression in its body
into a musical object generator, attaches the time
functions mentioned to the start time and dura-
tion of the whole object (instead of using the start
times and durations of the individual components,
as is the default case), and communicates these

Modularity

Before we continue the comparison, as an exercise to
the reader, try to decide whether the following two
transformations should have a similar or different re-
sult in ACF and GTF: first, a transposition of a note
by a declining glissando of a semitone that is then
made twice as long; and second, a transposition of a
note with the same declining glissando that was first
made twice as long. This means, in Lisp, is

(stretch 2
(trans (ramp 1 0)

(note 63 1 1)))

the same as

(trans (ramp 1 0)
(stretch 2

(note 63 1 1)))?

Computer Music Journal

I I I

44

rchr

Figure 17. Transforming
the constant pitch of a
note of duration 2 with a

linear interpolating ramp
yields a different result in
ACF than in GTF.

Figure 18. A sequence of
two notes with different
duration, separated by a
rest, whereby each pitch
attribute is associated

with the same ramp time
function. This produces a
different output in ACF
than in GTF.

(trans (ramp 1 0) (note 63 2 1)) =*

(seq (note (ramp 64 62) 1 1)
(pause .5)
(note (ramp 64 62) 1.5 1)) =>

64

63

62

61

6C

64-

63-

62-

61-

1-

The answer will be given below. We will first
look at a simpler sub-example, shown in Figure 16.
In this case, the pitch of the note is transposed
with a descending linear ramp, adding values to
the note's constant pitch. Both ACF and GTF pro-
duce the same output.

However, when the note is made twice as long,
by giving it duration 2, in ACF the shape of the
ramp does not change, while in GTF it stretches
along with the note's duration, i.e., the pitch of the
note still starts at 64 and ends at 63 (see Figure 17).

This is not a bug, but a fundamental language-
design decision. The difference in behavior is
caused by what, again, seems to be a small differ-
ence in the two time-function definitions. In ACF,
at define time a time function A(t) is "instanti-
ated." It has access to the formal parameters of
ramp and the implicit parameters of the transfor-
mation environment (S and F; see Equation 5 be-
low). In GTF (Equation 6), ramp evaluates to a
function of start time, duration, and time (i.e., A(s,
d, t)). This definition is independent of the trans-
formations acting on the objects it might be linked
to. Note that stretch factor F is not mentioned in
Equation 6, while it is in Equation 5.

ACF: ramp(from, to, d)- A(t) from + - (to - from) (5) Fd

GTF: ramp(from, to) = A (s, d,t) from + - (to - from) (6) d

Furthermore, in ACF ramp has an extra param-
eter named duration (d) that must be explicitly
communicated to the time function, while in
GTF, in the default case, the time function is

60o 1 2 3

64

63-

62-

61-

60- ---

O^i1 2 3

given the duration of the object that it is used for.
So, to obtain the same output in ACF as in GTF
for this example, ramp must be explicitly in-
formed about the duration of the object it is used
for (duration is underlined):
;;; ACF-specific
(trans (ramp 1 0 2) (note 63 2 1))

All functions of time in the ACF systems have
this optional duration parameter (with the default
being 1.0 sec). However, Arctic (Dannenberg, Mc-
Avinney, and Rubine 1986) elegantly works around
this problem by introducing normalized durations-
all time functions and behaviors must be explicitly
stretched to obtain the desired duration. Another,
more elaborate example is shown in Figure 18.

Here as well, to obtain the same output in ACF
as in GTF, the durations of the individual notes
have to be explicitly communicated to every func-
tion of time (duration is underlined):

;;; ACF-specific
(seq (note (ramp 64 62 1) 1 1)

(pause .5)
(note (ramp 64 62 1.5) 1.5 1))

Finally, to come back to the question stated in
the beginning of this section with regard to the ef-
fect of the order of applying transformations, Fig-
ure 19 shows that ACF and GTF give different
results-for reasons just described.

The difference of having time functions that can
be attached to musical objects (like in GTF), and
time functions that are independent entities and
are also sensitive to time transformations (as in

Honing 45

Figure 19. How order af-
fects applying a trans
and stretch transforma-
tion to a note. Stretching
a transposed note gives

the same result in ACF
and GTF (a); but transpos-
ing a stretched note gives
a different result in ACF
and GTF (b).

Figure 20. Sequence of
two notes with a time
function locally bound to
the variable glissando,
and its differing output in
ACF and GTF.

(stretch 2 (trans (ramp 1 0) (note 63 1 1))) =

64

63

62-

61-

60-

0 1 3

(a)

(let ((glissando (ramp 64 63)))
(seq (note glissando 1 1)

(pause .5)
(note glissando 1.5 1))) =)

64-

63

62

61

60-

0

(trans (ramp 1 O) (stretch 2 (note 63 1 1))) =

64.

63-

62-

61- 61-

60- 60-

6oACF i 2 3 0 1 2 3

(b)

ACF), indicates an important difference in modu-
larity between the two formalisms. In GTF, time
functions and transformations are orthogonal; the
definition of one can be changed or extended with-
out influencing the workings of the other. In ACF,
time functions and transformations interact (for
example, time functions are communicated a
stretch factor-a time-transformation parameter).
The issue of orthogonality will become crucial
when the language is extended with, for example,
time-varying time transformations (i.e., tempo or
event-shift transformations using timing func-
tions), because all behaviors must be modified to
be able to work with these extensions.

Flexibility

Next, consider the output of the glissando ex-
ample in Figure 20. For the same reasons as de-
scribed for the example in Figure 14c, ACF and
GTF give different results.

However, the point should be made here that
despite the characteristics of a specific language,
one sometimes wants to express one and some-
times the other behavior, i.e., time functions that
are dependent or independent of musical objects.
In GTF, the semantics of the ACF example can be
obtained by defining a linear ramp that is indepen-
dent of the duration of the object it is attached
to-an independent-ramp (see Figure 21a).

But the independent-ramp in GTF is not the
same as ramp in ACF. It still uses the start time of
the object to which it is applied. While the time
function constructor has a fixed decline/incline, it
always starts at the same value at the object's
start time (see Figure 21b). This is another behav-
ior that might be preferable in some musical situa-
tions.

Yet another alternative is shown in Figure 21c.
A ramp is linked here to the whole object, stretch-
ing along with its duration, such that it always
starts at 64 and ends at 63.

The general point is that the issue is not decid-
ing on correct semantics, but, instead, indicating
how much flexibility we need to express a multi-
tude of musically viable situations. Furthermore,
the examples above make use of very simple time
functions-without mechanisms to compose new
time functions from existing ones, they will re-
main trivial examples. It is essential that we can
abstract from them, building more musically real-
istic functions out of simpler ones that are well
understood. As an example, assume we want to

Computer Music Journal

' _ 63-

'~~ ~62-

'i~--i _ 61-

60-

46

Figure 21. Three GTF-spe-
cific examples of alterna-
tive ways to link a time
function to musical ob-
jects. Attaching a linear
ramp with its own inde-
pendent duration (its
third argument) to the
whole sequence (identical
to the output in ACF for
the expression shown in
Figure 20 for ACF) (a); pa-

rameterizing the indi-
vidual notes with a ramp
independent of the dura-
tion of the object it is
used for (it starts at 64 for
every note, but then has a
fixed decline) (b); and at-
taching a ramp to the
whole sequence, resulting
in a glissando over the en-
tire object starting at 64
and ending at 63 (c).

Figure 22. Output of the
user-defined function ex-
ample that links a com-
posite time function,
constructed from a ramp
starting at 64 and ending
at 63 over the duration of
the whole sequence, and
an oscillator attached to
each individual note (a).

It displays the correct be-
havior when stretched as
a whole: the glissando is
compressed (but still
starts at 64 and ends at
63), while the vibrato
component drops some
periods, depending on the
new durations of the indi-
vidual notes (b).

; GTF-specific
(with-attached-gtfs

((glissando (independent-ramp 64 63 1)))
(seq (note glissando 1 1)

(pause .5)
(note glissando 1.5 1))) =

63-

62-

61-

60-

(a) OdTF11 2 3

; GTF-specific
(let ((glissando (independent-ramp 64 63 1)))

(seq (note glissando 1 1)
(pause .5)
(note glissando 1.5 1))) =

64

63

62-

61-

60-

0-GwF i 2 3

; GTF-specific
(with-attached-gtfs ((glissando (ramp 64 63)))

(seq (note glissando 1 1)
(pause .5)
(note glissando 1.5 1))) =

62-
62-

61-

60-

o0 GTF|l 3

(a)

(stretch .5 (example)) =*

64:
63-

62-

61-

60-

o0 I 1 3
(b)

define a time function that embodies glissandi
with a little vibrato, a simplistic first step in the
direction of expressing the musical knowledge
used in singing. This is shown in Figure 22. We
can compose a glissando with a vibrato by adding
the results of a ramp that is linked to the whole
musical object, and an oscillator time function
that is linked to the individual components of the
musical object (all this without having to refer to
the internal structure of a-musical-object).
;;; GTF-specific
(defun example ()

(with-attached-gtfs ((glissando (ramp 64 63)))
(let* ((vibrato (oscillator 0 2 .5))

(pitch (time-fun-+ glissando vibrato)))

(a-musical-object pitch))))

Honing

(example) =>

64

63

62

61

6C

Z-

I 1-

'0-t^l ~~~~~2 3

(b)

(c)

I I I I

47

Programs Versus Data

In ACF, all behaviors and transformations are pro-
grams, and the output is generated as a side-effect.
Functions of time are also, in a sense, behaviors
that can inspect the transformation environment
(In Arctic there is indeed no distinction between
time functions and behaviors; all behaviors are, in
fact, functions of time). This implies that if one
wants to add a MIDI play function or a graphical
extension, all behaviors must be modified-a te-
dious job in a large-scale system (see Dannenberg,
Fraley, and Velikonja 1991). In GTF, all objects of
the language (musical objects, transformations,
and time functions) are first-class objects, as they
deliver data structures and can be bound and
passed as arguments. They can therefore be in-
spected by other programs or serve as input to
other systems (for example, graphics- or sound-
generation systems).

This data-versus-programs distinction also has
an important influence on the expressiveness of
the representation itself. For instance, in the case
of a language with musical objects as procedures,
there is no access to these objects after definition.
This forces all communication from, for example,
time functions to musical objects and vice versa,
to be realized at define time. Representation prob-
lems that can be characterized as based upon "bot-
tom-up" or "lateral" communication, dependent
on the accessibility of musical objects after defini-
tion, cannot be represented in such languages (see
the "compressor problem" and "transition prob-
lem" in Desain and Honing 1993).

Conclusion

In this study, two formalisms for describing func-
tions of time were compared using micro-version
programs as a means to gain insight in their work-
ings. Although both systems provide a solution to
the vibrato problem-in that they acknowledge
the need for more time information besides actual
time-several important semantic differences were
indicated. These differences were shown to be in-
trinsic to the design of the two systems and in the

way they support notions such as abstraction, flex-
ibility, and extensibility.

This article is restricted to the vibrato problem,
which reflects just a minor aspect of a representa-
tional system for music. Transformations and mu-
sical objects-their construction, structuring, and
use-are not discussed. Other, more pragmatic is-
sues, including efficiency and real-time possibili-
ties, are also left untouched. The aim, though, is
to achieve a true understanding of what seems to
be irrelevant differences between two relatively
simple formalisms. This understanding is essen-
tial, for instance, in choosing a formalism as a fun-
damental building block of a more elaborate
representation system for music. Finally, the vi-
brato problem is a key example of the kind of ex-
pressive power that we need for the next
generation of synthesizers that allow high-level
musical control; for example, synthesis methods
based on physical models (Smith 1992), or revital-
ized additive synthesis (Serra and Smith 1990).

Acknowledgments

The author wishes to express his special thanks to
Roger Dannenberg for his open and collaborative
attitude, providing full access to his systems; the
article benefited greatly from comments he made
on earlier versions. Peter Desain is to be thanked
for helping out at crucial stages of this research
and for greatly improving its presentation. Also,
thanks to Huub van Thienen for his detailed com-
ments on an earlier draft. None of them, of course,
necessarily subscribes to any of my conclusions.
Remko Scha and the Computational Linguistics
Department of the University of Amsterdam are
thanked for providing the environment in which
this research could evolve.

Part of this work benefited from a travel grant
by Netherlands Organization for Scientific Re-
search (NWO) while visiting the Center for Com-
puter Research in Music and Acoustics, Stanford
University, on kind invitation of Chris Chafe and
John Chowning. The author's research has been
made possible by a fellowship of the Royal Nether-
lands Academy of Arts and Sciences (KNAW).

Computer Music Journal

g l I

48

References

Abelson, H., and G. Sussman. 1985. Structure and
Interpretation of Computer Programs. Cambridge,
Massachusetts: MIT Press.

Dannenberg, R. B. 1989. "The Canon Score Language."
Computer Music Journal 13(1).

Dannenberg, R. B. 1993. "The Implementation of
Nyquist, A Sound Synthesis Language." Proceedings
of the 1993 International Computer Music
Conference. San Francisco: International Computer
Music Association.

Dannenberg, R. B., C. L. Fraley, and P. Velikonja. 1991.
"Fugue: A Functional Language for Sound Synthesis."
IEEE Computer 24(7).

Dannenberg, R. B., P. McAvinney, and D. Rubine. 1986.
"Arctic: A Functional Language for Real-Time
Systems." Computer Music Journal 10(4).

De Poli, G., A. Piccialli, and C. Roads, eds. 1991.
Representations of Musical Signals. Cambridge,
Massachusetts: MIT Press.

Desain, P., and H. Honing. 1992a. "Time Functions
Function Best as Functions of Multiple Times."
Computer Music Journal 16(2). Reprinted in P.
Desain and H. Honing 1992b.

Desain, P., and H. Honing. 1992b. Music, Mind and
Machine: Studies in Computer Music, Music
Cognition and Artificial Intelligence. Amsterdam,
The Netherlands: Thesis Publishers.

Desain, P., and H. Honing. 1993. "On Continuous
Musical Control of Discrete Musical Objects."

Proceedings of the 1993 International Computer
Music Conference. San Francisco: International
Computer Music Association.

Friedman, D. P., M. Wand, and C. T. Haynes. 1992.
Essentials of Programming Languages. Cambridge,
Massachusetts: MIT Press.

Henderson, P. 1980. Functional Programming. Application
and Implementation. London: Prentice-Hall.

Honing, H. 1993a. "A Microworld Approach to the
Formalization of Musical Knowledge." Computers
and the Humanities 27.

Honing, H. 1993b. "Issues in the Representation of
Time and Structure in Music." In I. Cross and I.
Deliege, eds. "Music and the Cognitive Sciences."
Contemporary Music Review. London: Harwood
Press. Pre-printed in P. Desain and H. Honing 1992b.

Richie, G. D., and F. K. Hanna. 1990. "AM: A Case
Study in AI Methodology." In D. Partridge and Y.
Wilks, eds. The Foundations of Artificial
Intelligence. A Source Book. Cambridge, UK:
Cambridge University Press.

Serra, X., and J. O. Smith. 1990. "Spectral Modeling
Synthesis: A Sound Analysis System Based on a
Deterministic plus Stochastic Decomposition."
Computer Music Journal 14(4).

Smith, J. 0. 1992. "Physical Modeling Using Digital
Waveguides." Computer Music Journal 16(4).

Stoy, J. E. 1977. Denotational Semantics: The Scott-
Strachey Approach to Programming Language
Theory. Cambridge, Massachusetts: MIT Press.

Honing

I

49

	Article Contents
	p. 32
	p. 33
	p. 34
	p. 35
	p. 36
	p. 37
	p. 38
	p. 39
	p. 40
	p. 41
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46
	p. 47
	p. 48
	p. 49

	Issue Table of Contents
	Computer Music Journal, Vol. 19, No. 3 (Autumn, 1995), pp. 1-86
	Front Matter [pp. 2 - 12]
	About This Issue [p. 1]
	Editor's Notes: Computer Music Instruction for Computer Engineering Students [pp. 4 - 6]
	Letters
	ZIPI Standard Too Generous with Tractors on the Freeway [pp. 6 - 7]
	A Child's Garden of Sound File Formats [p. 7]
	General VIDI [pp. 7 - 8]
	Unique N-ads, or Combinational Rotational Equivalence Classes [p. 8]

	Announcements [pp. 9 - 10]
	News [p. 11]
	Composition and Performance in the 1990s
	Touched by Machine?: Composition and Performance in the Digital Age [pp. 13 - 17]

	Synthesis and Transformation
	EIN: A Signal Processing Scratchpad [pp. 18 - 25]
	An ASIC for Digital Additive Sine-Wave Synthesis [pp. 26 - 31]

	Music Representation and Scoring
	The Vibrato Problem: Comparing Two Solutions [pp. 32 - 49]
	Score Following by Temporal Pattern [pp. 50 - 59]

	Reviews
	Events
	untitled [pp. 60 - 62]
	untitled [pp. 62 - 63]
	untitled [pp. 63 - 64]

	Publications
	untitled [pp. 64 - 65]

	Recordings
	untitled [pp. 65 - 66]
	untitled [pp. 66 - 68]

	Products
	OSC Deck 2 and 8-Track Tool for MacOS-Compatible Computers [pp. 68 - 69]
	Studer Dyaxis II Multi-Track Production System [pp. 69 - 70]
	Tascam DA-30 MK II DAT Recorder [pp. 70 - 72]
	Sonic Foundry Sound Forge Version 3.0 Sample Editing Software for Windows [pp. 72 - 73]
	Arboretum Systems Hyperprism 1.5 Effect Processing Software for the Macintosh [pp. 73 - 74]
	Lexicon PCM-80 Digital Effects Processor [pp. 74 - 75]

	Product Announcements [pp. 76 - 85]
	Back Matter [pp. 86 - 86]

