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Most high-level auditory functions require one to detect the onset and offset of sound sequences as well as reg-
istering the rate at which sounds are presented within the sound trains. By recording event-related brain poten-
tials to onsets and offsets of tone trains as well as to changes in the presentation rate, we tested whether these
fundamental auditory capabilities are functional at birth. Each of these events elicited significant event-related
potential components in sleeping healthy neonates. The data thus demonstrate that the newborn brain is
sensitive to these acoustic features suggesting that infants are geared towards the temporal aspects of segregat-
ing sound sources, speech and music perception already at birth.

© 2015 Published by Elsevier B.V.
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E1. Introduction

Extracting temporal regularities from sound sequences and detect-
ing their violations are fundamental capabilities for correctly perceiving
objects in the acoustic environment (Griffiths and Warren, 2004;
Winkler et al., 2009a), including interpreting speech and music
(Honing, 2013; Patel, 2008) and also form the basis of synchronized
communication with others (Jaffe et al., 2001; Jungers et al., 2002).
Speech dynamics provide information about the emotional state and in-
tents of the speaker, and structure information within and between
sentences and allow marking agreement and turn taking (O'Connell
and Kowal, 2008). Inmusic, temporal information defines beat, metrical
structure, and tempo, allows the extraction of expressive timing in
a performance, helps coordination between players, and conveys
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emotions (Honing, 2013). Because of its fundamental nature, one may
assume that this capability appears early during infancy. The current
study tested in newborn infants the detection of the three most basic
temporal features of sound sequences: onset, presentation rate change,
and offset.

Behavioral studies testing the processing of temporal features of
sound sequences found that 2-month old infants detect 15% tempo ac-
celerations in isochronous sequences at the base rate of 600 ms inter-
onset interval (IOI), but not at faster or slower IOIs (Baruch and Drake,
1997). They also coordinate movements with the tempo of external
sounds (Bobin-Bègue et al., 2006). By 6 months, infants form long-
term memories of tempo (Trainor et al., 2004) and by 9 months they
can distinguish between happy and sad music (Flom et al., 2008). The
sensitivity to temporal features of the stimulation was also proposed
to be an important predictor of later performance in tests of verbal de-
velopment in young infants (Benasich and Tallal, 2002; Chonchaiya
et al., 2013) though the mechanisms underlying these effects are un-
clear (Protopapas, 2014). Much less is known about auditory temporal
processing in newborns. Previous studies showed that neonates segre-
gate interleaved tonal sequences by pitch (Winkler et al., 2003), prefer
infant-directed to adult-directed speech and singing (Cooper and
Aslin, 1990; Masataka, 1999), and discriminate languages based on
rhythmic class (Nazzi et al., 1998; Ramus et al., 2000; Nazzi and
Ramus, 2003). These capabilities probably involve detecting auditory
temporal cues.
e of sound sequences in newborn infants, Int. J. Psychophysiol. (2015),
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In neonates, sound processing can be tested by measuring event-
related potentials (ERP) elicited by acoustic events. Two parallel event
detector systems have been described in adults (Näätänen, 1990;
Näätänen et al., 2011): one sensitive to sudden changes in sound energy
and another triggered by violations of some regular feature of a sound
sequence. The former is based on adaptation/refractoriness of afferent
neurons (in adults, the N1 ERP response; Näätänen and Picton, 1987;
May and Tiitinen, 2010), the latter probably on prediction errors in
the brain (the MMN component; Näätänen and Picton, 1987; Garrido
et al., 2009; Winkler, 2007). Although no true equivalent of either of
these adult ERP responses has been obtained in newborn infants, neo-
natal ERP responses to large energy changes and violations of simple
acoustic regularities have been described (Alho et al., 1990; for a review,
see Kushnerenko et al., 2013). Previous ERP studies testing temporal
features of sound sequences in young infants showed that occasional
shortenings of a regular 300 ms long pre-stimulus interval to 100 ms
are detected at 2 months of age (Otte et al., 2013; for similar results in
10-month olds, see Brannon et al., 2004, 2008) and that newborns
can distinguish between the downbeat and other positions within a
rhythmic sequence (Winkler et al., 2009a,b).

Thus, whereas we know that young infants use temporal cues while
making complex linguistic and musical discriminations, the develop-
mental origins of the underlying processing capabilities have not yet
been established. Here we assess the developmental origins of process-
ing the temporal structure of sound sequences by testing whether the
neonate brain is sensitive to the onset and offset of sound trains that
roughly estimate the structure of sentences or short musical phrases
aswell as to presentation rate changewithin them. To this endwe com-
pare responses elicited by significant events (onset and rate change) in
our sound sequences to events that are physically the same but appear
in a different context. We assume that the onset of the train elicits a
response; however if the rate change elicits a response it signals that
the changewas indeed detected. Finally if we see a response at the offset
of the train in a position where the continuation of the train could be
expected we can assume that the offset itself was detected.

2. Methods

ERPs were recorded from 30 (16 male) healthy, full-term newborn
infants during day 1–3 postpartum. The mean gestational age was
39.7 weeks (SD = 1.00), birth weight was 3450 g (SD = 372.46), and
the average Apgar score was 9/9.8 (SD = 0.52/0.48). An additional 7
(2 male) participants were recorded, but discarded due to excessive
electrical artifacts (b100 artefact free epochs per condition). Informed
consent was obtained from one or both parents. The mother of the
infant could opt to be present during the recording. The study was
conducted in full accordance with the World Medical Association
Declaration of Helsinki and all applicable national laws and it was
approved by the Medical Research Council—Committee of Scientific
and Research Ethics (ETT-TUKEB), Hungary. The experiment was
carried out in a dedicated experimental room at the Department of
Obstetrics–Gynaecology and Perinatal Intensive Care Unit, Military
Hospital, Budapest, Hungary.

Trains of complex tones (Fig. 1) uniform within but varying in pitch
(F0) across trains (8 different pitches taken from the C major scale: C3,
D3, E3, F3, G3, A3, B3, and C4, viz. 130.80, 147.15, 163.50, 173.96, 196.20,
217.13, 245.25, and 261.60 Hz, respectively) were delivered to the
infants at ~65dBSPL. Each tone consisted of the F0 and its first five
harmonics, the spectral power of the higher harmonics being set at
1:2, 1:3, 1:4, 1:5, and 1:6, with respect to that of the F0 component.
Tone durationwas 50ms, including 5ms rise and 5ms fall times (raised
cosine ramps). 170 trains were presented in two stimulus blocks. For
each train, a pitch was selected randomly (with equal probability; no
pitch repetition allowed). Trains consisted of 8–24 (randomly selected,
equal probability) tone repetitions and a silent interval. The N element
trainswere split into two parts: the first part consisting of N/2 (rounded
Please cite this article as: Háden, G.P., et al., Detecting the temporal structur
http://dx.doi.org/10.1016/j.ijpsycho.2015.02.024
E
D
 P

R
O

O
F

down) + 0/1 (random) elements, the second part consisting of
N-n(first part) elements. Tones in the first part of the trainwere present-
ed at the “slow” rate (average IOI=200ms, 150msoffset to onset), and
in the second part at the “fast” rate (average IOI = 100ms; 50ms offset
to onset), followed by a silent interval (average IOI 1050 ms, 1000 ms
offset to onset). All time intervals were taken fromnormal distributions
with a standard deviation of 5%. The amount of jitter is below the adult
JND for tempo discrimination (Quené, 2007; Grondin et al., 2011) and
was chosen to dampen steady state responses arising from the fast
stimulation. The length of individual trains was about 1.2–3.6 s. Sounds
were presented binaurally using the E-Prime stimulus presentation
software (Psychology Software Tools, Inc., Pittsburgh, PA, USA) via
ER-1 headphones (Etymotic Research Inc., Elk Grove Village, IL,
USA) connected via sound tubes to self-adhesive ear-couplers (Natus
Medical Inc., San Carlos, CA, USA) placed over the infants' ears.

EEGwas recordedwith Ag/AgCl electrodes attached to the F3, Fz, F4,
C3, Cz, and C4 locations (international 10–20 system) using a direct-
coupled amplifier (V-Amp, Brain Products GmbH., Munich, Germany)
at 24-bit resolution and a sampling rate of 250 Hz or 1000 Hz
(1000 Hz sampling rate was used for 16 participants; due to
experimenter error, these recordings were off-line down-sampled to
250 Hz). The reference and ground electrodes were attached to the
nose and the forehead respectively. Signals were off-line filtered be-
tween 1 and 30 Hz and epochs from −100 to 500 ms with respect to
the event onset (tone or expected tone, see next paragraph) were ex-
tracted for each sound. The 100 ms pre-stimulus interval served as the
baseline for amplitude measurements and illustrations. Epochs with
an absolute voltage change outside the 0.1–100 μV range throughout
the epoch were rejected from the analyses as artefacts. Data from in-
fants with less than 100 artefact-free epochs per condition were
dropped from the analyses. The mean number of epochs and per condi-
tion is given in Table 1.

Responses were measured at the “train onset” (the first element
of the train), at “presentation rate change” (the first element after a
short, 100 ms IOI interval in the train), and at “expected tone”
(100 ms after train offset; see Fig. 1 b.). Responses were also measured
for “slow control” tones, tones between train onset and the rate change
but separated from both by at least 2 elements; and “fast control” tones,
tones between rate change and train offset but separated from both by
at least 2 elements. (e.g. in a 20 element train where the rate change
occurs at the 11th element, elements 4–8 are slow controls whereas
elements 14–17 are fast controls). Responses to train onset were com-
pared to slow control responseswhereas rate change and train offset re-
sponses were compared to fast control responses. Average response
amplitudes were measured from separate time windows for each type
of the three events. The latencies of the two highest-amplitude (early
and late) difference peaks were determined from the mean group re-
sponse averaged over all six electrode locations. The corresponding
window was defined as the continuous segment of data points on
both sides of the respective peakwithin which the difference amplitude
exceeded 30% of the corresponding peak amplitude (see Table 1. and
Fig. 2. for the latency ranges). This method allows comparison between
responses to event types and their respective controls when the
latencies of peaks vary or no clear peaks are visible.

Effects were tested with separate dependent-measures analyses
of variance (ANOVA) of the structure Stimulus type [Event vs.
Control] × Frontality [F vs. C electrode line] × Laterality [left vs. midline
vs. right] for the three timing events (Train Onset, Presentation Rate
Change, Expected tone) and the two (early and late)measurementwin-
dows. Greenhouse–Geisser correction ε factors (where appropriate)
and the partial η2 effect sizes are given in Table 1.

3. Results

ERP responses for train onsets, presentation rate changes, and ex-
pected tone (train offsets) are shown together with the corresponding
e of sound sequences in newborn infants, Int. J. Psychophysiol. (2015),
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control responses and difference waveforms on Fig. 2a, b, and c, respec-
tively. Each of these events elicited significantly different ERP responses
in both time windows (except for the late window of the presentation
rate change) compared with the corresponding control event (see
Table 1).

The control responses show a much adapted response, hardly
displaying any discernible waveforms. In contrast, all three stimulus
train events elicited unique waveforms with detectable component
structure. Thus the significant interactions with the scalp-distribution
factors (frontality and laterality)mainly represent the scalp distribution
of the ERPs elicited by the stimulus train events. Train onsets elicited a
large early negative followed by a positive response with frontocentral
maxima. This pattern is typical for large spectral energy changes
U
N
C
O

Table 1
Significant effects obtained in the ANOVAs of the structure Stimulus type [Event vs. Control] ×
three temporal events (TrainOnset, Presentation Rate Change, Train Offset) and the two (early a
sizes (η2), and, where applicable, Greenhouse–Geisser correction factors (ε) are also shown. Th
given in the second column.

ANOVA results

Condition μ epochs (σ) Measurement window Effect
Train Onset 150 (19) 24–192 ms Stimulus
vs. Frontality
Slow Control 771 (91) 232–408 ms Stimulus

Frontality
Stimulus
Stimulus

Presentation Rate Change 146 (17) 56–120 ms Stimulus
vs. Frontality
Fast Control 322 (35) 248–352 ms Frontality
Train Offset
vs.

150 (17) 0–164 ms Stimulus

Fast Control 322 (35) 256–372 ms Stimulus

Please cite this article as: Háden, G.P., et al., Detecting the temporal structur
http://dx.doi.org/10.1016/j.ijpsycho.2015.02.024
(Kushnerenko et al., 2007), as is the case for sounds appearing after
a relatively long silent interval having a different pitch from that
appearing in the previous train. The laterality effect found in the late
latency time window was caused by the left deviant response being
slightly smaller than the central deviant response (Tukey HSD,
df = 58, p b 0.01). Presentation-rate changes elicited only an early
frontocentral negative response. Finally, the response synchronized to
the expected onset of the tone that would have continued the train in
an isochronous manner shows an early broadly distributed positive
waveform followed by a negative one. The three-way interaction
found in the late time window was caused by the left central standard
response being smaller than the left and right central deviant response
(Tukey HSD, df= 58, p b .05).
Frontality [F vs. C electrode line] × Laterality [left vs. midline vs. right], separately for the
nd late)measurementwindows (seeMethods). In addition to the F, df, and p values, effect
e mean and standard deviations (in parentheses) of the number of artefact free epochs are

F df p ε η2

type 6.48 1, 29 0.016 – 0.18
5.35 1, 29 0.028 – 0.16

type 13.24 1, 29 0.001 – 0.31
14.03 1, 29 0.001 – 0.33

type × frontality 6.12 1, 29 0.019 – 0.17
type × laterality 4.11 2, 58 0.028 0.83 0.12
type 4.97 1, 29 0.034 – 0.15

9.60 1, 29 0.004 – 0.25
× laterality 6.00 2, 58 0.005 0.95 0.17
type 4.46 1, 29 0.037 – 0.14

type × frontality × laterality 4.43 2, 58 0.021 0.88 0.13

e of sound sequences in newborn infants, Int. J. Psychophysiol. (2015),
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Fig. 2.Group average (n=30)ERP anddifferencewaveforms on all six electrodes (F3, Fz, F4, C3, Cz, C4) for the a) Start of train vs. Slow control; b) Presentation rate change vs. Fast control;
c) Expected tone vs. Fast control events. Stimulus onset is at the crossing of the axes. Note that in c), the crossing of the axes is at the onset of the stimulus that would seamlessly continue
the train. Stimuli aremarked in black rectangles under each column. The stimulusmark in c) does not correspond to fast control. Amplitudemeasurement windows aremarkedwith grey
shading.
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4. Discussion

Results showed that the neonate brain detects the onset and offset
of sound trains as well as changes in the presentation rate. Thus the
abilities for detecting and processing these primary temporal events
are functional already at birth.

Train onsets elicited the largest responses, whichwere similar to the
N1–P2-like components found in newborns (Wunderlich et al., 2006;
Kushnerenko et al., 2002, 2007). The P2-like positive waveform has
been shown to reflect the detection of sound onsets (Telkemeyer
et al., 2009). This is similar to adults, in whom the auditory N1 is the
most prominent response elicited by abrupt changes in spectral sound
energy (Näätänen and Picton, 1987) and it likely reflects an adapta-
tion/refractoriness based response increment. That is, in contrast to
the highly refracted response elicited within the fast-paced train, the
neuronal elements are relatively fresh after a longer silent interval and
change of spectral contents. Such responses help one to detect the
emergence of a new auditory object.

Responses elicited by train offsets show that the infants were set for
the regular continuation of sound sequences. The very early onset of the
difference response militates against a passive effect (i.e., that the ob-
served waveform would represent the late response to the previous
stimulus, which was cut off within the train by the arrival of next
tone), because even the earliest effects of the next sound take a little
more time to reach the cortex. Rather, this response is quite similar to
that observed when a predictable (as opposed to an unpredictable)
tone is omitted from a sequence (Bendixen et al., 2009), suggesting
that this response represents the brain's preparation for a predicted
sound event. This prediction error could allow one to detect the end of
stimulus trains. The current response was morphologically different
from that obtained in neonates for sound-omissions violating the rhyth-
mic structure of the sound sequence (Winkler et al., 2009a,b). Predict-
ability was lower in Winkler et al. (2009b) study due to the variability
set up to distinguish the detection of a repeating pattern (Stefanics
et al., 2007) from that of the rhythmic structure. The difference in the
morphology of onset and offset responses is unlike the corresponding
adult responses where onsets and offsets elicit similar N1 responses
(Yamashiro et al., 2009). This suggests that the continuation of the
train was indeed expected and the response cannot be described in
terms of an offset response.

Finally, the presentation rate change elicited an early negative re-
sponse. As the change of rate brings no spectral change and nor can it
be explained by lower levels of refractoriness (because the inter-tone
interval was shortened), this response is not likely to originate from
differential refractoriness. On the other hand, the observed response is
quite different from the later positive response observed for occasional
early sound delivery in 2-month olds (Otte et al., 2013). This difference
suggests that the processing of temporal changes is context-dependent,
aswas also found for spectral changes (Háden et al., 2013). Onepossibil-
ity is that after several trials of the same structure, the neonatal brain
learned that a switch to a faster presentation rate can be expected and
the responsemarks the detection of the onset of the change. This is sup-
ported by the similarity of the responses to that obtained in 3 month
olds to the onsets of sequences made up from of either 12 or 25 ms
long snippets of modulated noise (Telkemeyer et al., 2011). However,
newborns did not show this type of response to the same stimuli
(Telkemeyer et al., 2009). Thus the analogy may not be perfect.

We investigated the developmental origins of processing the gross
temporal structure of short sound sequences. In general, we found
that newborn infants have similar capabilities as adults for processing
the cues that allow one to form a rough description of auditory objects.
Although we have suggested in Introduction that such fundamental ca-
pabilities are required for infants for learning from others, the finding is
still surprising on one sense: Research in young infants has consistently
shown that when it comes to simple discrimination abilities, infantile
capabilities are far from the adult level (see, e.g., pitch discrimination;
Please cite this article as: Háden, G.P., et al., Detecting the temporal structur
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Novitski et al., 2007; for a review, seeWerner, 2007). Regarding tempo-
ral features, for example, the sensitivity of detecting changes in sound
duration (Kushnerenko et al., 2001; Čeponienė et al., 2002; Cheour
et al., 2002) or gaps between sounds is much lower than that in adults
even at 6–7 months of age (Smith et al., 2006; Trainor et al., 2001,
2003; Werner et al., 1992). In sharp contrast, the abilities required for
structuring the auditory environment, such as auditory stream segrega-
tion (Winkler et al., 2003), source identification (Vestergaard et al.,
2009), pattern detection (Stefanics et al., 2007), or extracting the tem-
poral structure of sound sequences (the current study as well as
Winkler et al., 2009b) appear to be functional already at birth. These
abilities found already at birth could allow them to access information
encoded in the tempo of both speech and music and to enter into a
dialogue with others later in development where timing is crucial to
achieve synchrony and facilitates even preverbal communication
(Jaffe et al., 2001). The neonatal auditory processing capabilities
found in the current study are amongst those serving cognitive develop-
ment through helping to learn speech and music perception and
bootstrapping communication by sound.
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