« 3% 3k ok ok sk ok ok ok ok sk 3k ok ok ok sk ok ok ok ok sk ok b ok ok sk 3k b ok ok sk ok ok ok ok sk ok b ok ok sk ok b ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk 3k ok ok 3k sk ok ok ok 3k sk ok k ok 3k sk ok b ok ok dk ok ok ok 3k sk ok ok ok %k ok ok k ok
>

;% A CALCULUS FOR MUSIC PERFORMANCE EXPRESSION *
3*¥ () 1991, Henkjan Honing & Peter Desain *
.k *
;* in CLOS (Common Lisp), uses loop macro *

« 3k 3k 3k 3k ok 3k sk 3k ok sk sk sk ok ok 3k ok 3k ok ok 3k 3k sk ok sk sk sk sk ok sk 3k ok ok ok ok 3k ok sk ok sk sk sk sk ok ok ok 3k ok ok 3k 3k sk sk ok sk sk sk ok ok 3k 3k 3k ok ok 3k 3k sk ok sk sk sk sk ok ok 3k 3k ok ok 3k 3k sk sk ok sk sk 3k ok ok ok %k %k ok ok %k %k %k sk ok ok
H

« 3 3k 3k ok ok 3k ok ok ok ok ok ok ok 3k 3k %k 3k ok ok 3k 3k ok % 3k 3k k ok ok 3k 3k %k ok ok ok 3k ok % ok 3k ok k ok ok ok 3k 3k ok ok 3k 3k 3k 3k 3k 3k 3k K ok 3k ok %k 3k ok ok 3k % 3k ok 3k 3k K ok ok ok %k %k 3k ok 3k 3k 3k 3k ok 3k 3k 3k K ok ok %k % ok ok ok %k sk ok ok ok
H

; musical objects

« 3 3k 3k ok 3k 3k ok ok ok 3k 3k ok ok 3k 3k 3k %k ok ok % 3k ok 3k 3k 3k k ok ok 3k 3k %k 3k ok ok % 3k 3k ok 3k 3k k ok ok 3k 3k %k 3k ok 3k 3k 3k k ok 3k kK ok 3k ok %k 3k ok ok 3k 3k 3k ok 3k 3k 3k ok ok 3k %k %k 3k ok 3k 3k % 3k 3k 3k 3k 3k ok ok ok %k %k ok ok %k %k sk k ok ok
H

o 3k s 3k ok ok ok ok sk ok sk ok ok o oK sk ok ok ok ok sk 3K sk ok ok ok s K sk 3k ok ok 3k ok sk 3k ok 3 3k sk K sk ok ok ok sk ok sk ok ok s 3k sk K ok ok s ok ok ok ok ok sk ok sk ok ok o ok sk 3k ok ok ok 3 ok sk ok sk ok ok o ok sk K ok o ok ok oK sk ok ok
H

; abstract classes of musical objects

;(defpackage calculus)
;(in-package calculus)

(defclass musical-object ()
((name :reader name :initarg :name :initform 'no-name :type symbol)
(score-onset :reader score-onset :type rational :initform @)
(left :reader left :initform nil)
(right :reader right :initform nil))
(:documentation "Musical Object"))

(defclass structured (musical-object)
((score-offset :reader score-offset :type rational))
(:documentation "Structured Musical Object"))

(defclass multilateral (structured)
((components :reader components :initarg :components))
(:documentation "Multilateral Musical Object™))

(defclass collateral (structured)
((main :reader main :initarg :main)
(ornament :reader ornament :initarg :ornament))
(:documentation "Ornamented Musical Object"))

(defclass successive (structured)

O

(:documentation "Successive Musical Object"))

(defclass simultaneous (structured)

O

(:documentation "Simultaneous Musical Object"))

(defclass basic (musical-object)
((score-offset :reader score-offset :type rational :initarg :score-dur))
(:documentation "Basic Musical Object"))

o sk sk ok ok ok sk ok sk sk ok ke sk ok sk sk sk ke sk ok s sk ok sk sk ok s sk ok s sk ok sk sk ok sk ok ok sk ok ok sk ok sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk sk sk sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
B

; instantiatable classes of musical objects

(defclass S (multilateral successive) () (:documentation "Sequential™))
(defclass P (multilateral simultaneous) () (:documentation "Parallel"))
(defclass ACCIA (collateral simultaneous) () (:documentation "Acciaccature"))
(defclass APPOG (collateral successive) () (:documentation "Appoggiature"))

(defclass NOTE (basic)
((dynamic :accessor dynamic :type float :initarg :dynamic)
(perf-onset :accessor perf-onset :type float :initarg :perf-onset :initform nil)
(perf-offset :accessor perf-offset :type float :initarg :perf-offset :initform nil))
(:documentation "Note"))

(defclass PAUSE (basic) () (:documentation "Rest"))

« 3% 3k ok ok ok 3k ok ok ok ok ok ok ok ok 3k ok k ok ok sk ok % ok 3k sk ok ok ok ok sk 3k ok ok 3k Sk ok ok ok ok 3k ok ok ok ok Sk ok b ok 3k Sk ok ok ok 3k sk ok ok ok 3k sk 3k ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok k ok 3k sk ok ok ok 3k k ok ok ok % ok ok ok ok %k ok ok kok
5

; creators for musical objects

(defun S (name &rest components)
(make-instance 'S :name name :components components))

(defun P (name &rest components)
(make-instance 'P :name name :components components))

(defun ACCIA (name ornament main)
(make-instance 'ACCIA :name name :ornament ornament :main main))

(defun APPOG (name ornament main)
(make-instance 'APPOG :name name :ornament ornament :main main))

(defun NOTE (&key name perf-onset perf-offset score-dur (dynamic 1))
(make-instance 'NOTE :name name
:perf-onset perf-onset
:perf-offset perf-offset
:score-dur score-dur
:dynamic dynamic))

(defun PAUSE (&key name score-dur)
(make-instance 'PAUSE :name name :score-dur score-dur))

« 3% 3k 3k 3k 3k ok ok ok ok ok ok % ok ok 3k ok % ok ok sk ok 3k ok % sk ok 3k ok 3k 3k ok b ok ok 3k ok 3k ok ok sk ok b ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok % sk ok ok ok % ok ok ok ok %k ok ok k ok
5

; extra acces functions for musical objects

(defmethod components ((object basic)) nil)
(defmethod components ((object collateral))
(list (ornament object)(main object)))

(defmethod all-notes ((object musical-object))
(loop for component in (components object) append (all-notes component)))

(defmethod all-notes ((object note)) (list object))

(defun has-name? (&rest names)
#'(lambda (object &rest ignore)(member (name object) names)))

(defmethod find-parts ((object musical-object) pred)
(if (funcall pred object)
(list object)
(loop for component in (components object)
append (find-parts component pred))))

« 3% 3k 3k ok 3k ok ok ok ok ok ok ok ok 3k 3k ok 3k ok ok sk ok 3k ok ok 3k ok ok ok ok sk ok b ok % 3k ok 3k ok ok sk ok 3k ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok % sk ok ok ok 3k 3k ok ok ok %k ok ok ok %k ok ok ok ok %k ok ok ok ok
s

; initialization of score times and context of musical objects

(defmethod initialize-instance :after ((object musical-object) &rest ignore)
(object-check object)
(initialize-score-times object)
(initialize-context object))

(defmethod object-check ((object musical-object)) nil)

& sk ok ok ok ok ok sk ok ok ok ke ok ok s ok sk sk ok ok s sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk sk ok sk sk ok sk ke sk ok sk sk sk sk ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk sk sk sk sk ok sk ok ok sk ok ok sk ok ok sk sk ok ok
5

; initialization of score-onset and offset of musical objects
(defmethod initialize-score-times ((object basic)))

(defmethod initialize-score-times ((object P))
(setf (slot-value object 'score-offset)
(slot-value (first (components object)) 'score-offset)))

(defmethod initialize-score-times ((object S))
(loop with onset = @
for component in (components object)
do (shift-score component onset)
(setf onset (slot-value component 'score-offset))
finally (setf (slot-value object 'score-offset) onset)))

(defmethod initialize-score-times ((object collateral))
(setf (slot-value object 'score-offset)
(slot-value (main object) 'score-offset)))

(defmethod initialize-score-times :after ((object APP0OG))
(shift-score (ornament object)
(- (slot-value (ornament object) 'score-offset))))

(defmethod shift-score ((object musical-object) shift)
(incf (slot-value object 'score-onset) shift)
(incf (slot-value object 'score-offset) shift)
(loop for component in (components object) do (shift-score component shift)))

o sk ok ok ok ok sk ok sk sk ok sk sk ok sk sk sk sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk sk ok sk sk ok sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

; initialization of context of musical objects
(defmethod initialize-context ((object musical-object)))

(defmethod initialize-context ((object S))
(loop for component in (components object)
for next-component in (rest (components object))
do (set-contexts component next-component)))

(defmethod initialize-context ((object APPOG))
(set-context (ornament object) (main object) 'right))

(defmethod set-contexts ((left musical-object) (right musical-object))
(set-context left right 'right)
(set-context right left 'left))

(defmethod set-context ((object musical-object) (context musical-object) dir)
(setf (slot-value object dir) context))

(defmethod set-context :after ((object P) (context musical-object) dir)
(loop for component in (components object)
do (set-context component context dir)))

(defmethod set-context :after ((object S) (context musical-object) dir)
(if (eql dir 'left)
(set-context (first (components object)) context dir)
(set-context (last-element (components object)) context dir)))

(defmethod set-context :after ((object collateral) (context musical-object) dir)
(set-context (main object) context dir))

(defmethod set-context :after ((object ACCIA) (context musical-object) dir)
(when (eql dir 'left)
(set-context (ornament object) context dir)))

« 3 3k 3k 3k 3k 3k 3k 3k ok 3k 3k k ok ok 3k 3k 3k ok ok 3k 3k 3k 3k 3k 3k 3k sk ok 3k 3k %k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k ok ok 3k 3k %k 3k ok 3k 3k 3k 3k 3k 3k 3k K 3k ok 3k %k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k ok 3k %k %k %k ok 3k 3k 3k 3k 3k 3k 3k 3k ok ok 3k %k %k ok %k %k %k sk k ok ok
H

« 3% 3k 3k 3k 3k 3k sk ok ok 3k 3k ok ok 3k 3k ok 3k sk 3k ok 3k 3k ok ok sk 3k ok ok 3k 3k 3k 3k 3k ok ok sk 3k ok 3k 3k ok 3k ok 3k 3k 3k sk ok ok 3k 3k ok 3k 3k 3k 3k sk sk ok 3k sk ok ok 3k 3k 3k ok ok 3k ok 3k sk 3k ok 3k 3k ok 3k 3k 3k ok ok 3k %k 3k 3k 3k ok 3k 3k %k ok 3k %k %k kK k k
H

; maps

« 3% 3k 3k 3k ok 3k sk ok ok 3k sk ok ok sk sk ok 3k sk 3k ok 3k 3k ok ok sk 3k ok ok sk 3k 3k sk 3k ok 3k sk ok ok 3k 3k ok ok ok 3k 3k 3k sk ok ok sk 3k ok 3k 3k 3k 3k sk 3k ok 3k sk ok ok sk 3k ok 3k ok 3k ok 3k sk ok ok 3k k ok 3k 3k 3k ok ok 3k ok 3k ok ok ok sk 3k %k ok 3k %k %k Kk k
H

o sk ok ok ok ok ok sk sk sk ok sk ok ok sk ok sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
B

; abstract classes of maps

(defclass map O
((sections :accessor sections :initarg :sections))
(:documentation "Expression Map"))

(defclass multilateral-map (map)())
(defclass collateral-map (map)())
(defclass simultaneous-map (map)())
(defclass successive-map (map)())

+ s ks o s sk ok ok ok ok o ok s ok sk ok sk ok ok o ok o o s sk ok o ok o ok s sk sk ok ok ok o ok s sk sk sk ko ok sk sk sk ok ok o ok sk sk sk sk ok ok ok sk o sk sk ok ok o ok sk ok sk ok sk sk ok ok o ok ok ok ok
5

; instantiable classes of maps

(defclass P-map (multilateral-map simultaneous-map)())
(defclass S-map (multilateral-map successive-map)())
(defclass ACCIA-map (collateral-map simultaneous-map)())
(defclass APPOG-map (collateral-map successive-map)())

« 3% 3k 3k ok ok 3k ok ok ok sk 3k ok ok ok sk ok b ok ok sk ok b ok ok sk 3k ok ok ok sk ok ok ok ok sk 3k ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok b ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok ok ok ok kok
>

; creator for maps

(defun make-map (sections)
(let ((ordered-sections (sort sections #'< :key #'score-onset)))
(cond ((null ordered-sections) nil)
(Cand (same-section-type? ordered-sections)
(not-overlapping? ordered-sections))
(make-instance (section-to-map (first ordered-sections))
:sections ordered-sections))
(t Cerror "attempt to merge incompatible sections into expression map")))))

o sk o ok sk ok ok sk ok ok ok ke ok ok sk ok ok s ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk ke ok sk ke ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk ok sk sk ok sk ok s ok ok sk sk ok s ok ok sk sk ok ok
)

; sections of maps
« 3 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k 3k 3k 3k 3k 3k ok ok 3k 3k %k 3k ok ok 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k %k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k ok 3k 3k %k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok ok %k %k %k ok %k %k %k sk ok ok k.
H

; abstract classes of sections of maps

(defclass section ()
(Call-score-times :accessor all-score-times :initarg :all-score-times)
(all-expressions :accessor all-expressions :initarg :all-expressions))
(:documentation "Expression Section"))

(defclass multilateral-section (section)())
(defclass collateral-section (section)())
(defclass successive-section (section)())
(defclass simultaneous-section (section)())

o sk ok ok ok ok ok sk ok ok ok ke ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk ke sk sk ke ok ok ke sk ok ok ok ok sk ok ok sk sk ok ok ok ok sk sk ok ok sk ok sk ok ok sk sk ok ok sk ok ok sk ok ok ok s ok ok ok ok ok ok ok o sk ok ok ok
5

; instantiable classes of sections of maps

(defclass S-section (successive-section multilateral-section)())
(defclass P-section (simultaneous-section multilateral-section)())
(defclass ACCIA-section (simultaneous-section collateral-section)())
(defclass APPOG-section (successive-section collateral-section)())

o sk o ok sk ok ok sk ok ok ok ke ok ok sk ok ok sk ok ok sk sk ok sk ok ok s sk ok sk sk ok ok sk ok sk sk ok sk sk sk ok sk sk sk sk ke sk ok sk sk sk sk ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk sk ok ok sk ok ok sk ok ok s ok ok sk sk ok ok
)

; compatibility relation between musical objects, expression maps and sections thereof

(defmethod object-to-section ((object musical-object))
(third (find (class-name (class-of object)) (object-network) :key #'first)))

(defmethod section-to-map ((section section))
(second (find (class-name (class-of section)) (object-network) :key #'third)))

(defun object-network
'((S S-map S-section)
(P P-map P-section)
(ACCIA ACCIA-map ACCIA-section)
(APPOG APPOG-map APPOG-section)))

o sk o ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk ke ok sk ok ok sk ke sk ok ok sk ok sk ok ok sk sk ok ke ok ok sk sk ok ok sk ok sk ok ok sk sk ok ok sk ok ok sk ok sk ok ok ok ok ok ok ok o sk ok ok ok
5

; creators for sections of maps

(defun make-section (section-class all-score-times all-expressions)
(make-instance section-class :all-score-times all-score-times :all-expressions all-expressions))

(defmethod make-new-section ((section section) expressions)
(make-section (class-of section)
(snoc (score-times section) (score-offset section))
(snoc expressions (next-expression section))))

(defmethod make-new-section-from-pairs ((section section) pairs)
(make-section (class-of section)
(snoc (mapcar #'first pairs) (score-offset section))
(snoc (mapcar #'second pairs) (next-expression section))))

o sk ok ok ok ok sk ok sk sk ok ke sk ok sk sk sk sk sk ok s sk ok s sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk ke sk ok ke sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
5

; extra accessors for sections of maps

(defmethod score-onset ((section section))
(first (all-score-times section)))

(defmethod score-offset ((section section))
(last-element (all-score-times section)))

(defmethod expressions ((section section))
(butlast (all-expressions section)))

(defmethod next-expression ((section section))
(last-element (all-expressions section)))

(defmethod score-times ((section section))
(butlast (all-score-times section)))

(defmethod score-onset ((section collateral-section))
(score-main section))

(defmethod main-expression ((section collateral-section))
(second (all-expressions section)))

(defmethod ornament-expression ((section collateral-section))
(first (all-expressions section)))

(defmethod score-main ((section collateral-section))
(second (all-score-times section)))

(defmethod score-ornament ((section collateral-section))
(first (all-score-times section)))

(defun same-section-type? (sections)
(every #'(lambda (section) (class-of section)) sections))

(defun not-overlapping? (sections)
(loop for section in sections
for next-section in (rest sections)
never (> (score-offset section) (score-onset next-section))))

« 3% 3k ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok b ok ok sk 3k 3k ok ok 3k 3k ok ok ok sk ok ok ok 3k 3k ok ok ok ok Sk ok b ok ok Sk 3k ok ok 3k 3k ok k ok 3k sk ok ok ok 3k k ok ok ok ok sk 3k ok ok 3k sk ok ok ok 3k sk ok k ok 3k sk ok ok ok 3k sk ok ok ok % ok ok ok ok %k ok ok ok ok
5

; find section (containing score time) in expression map

(defmethod lookup-section-containing ((map map) score-time)
(loop for section in (sections map)
when (<= (score-onset section) score-time (score-offset section))
do (return section)))

o sk o ok ok ok ok sk ok ok ok ok ok ok sk ok ok sk ok ok s sk ok sk ok ok sk ok ok sk sk ok ok ok ok sk sk ok sk sk ok ok sk ke ok sk ke ok ok sk sk ok sk sk ok sk ok ok sk sk ok sk ok ok sk sk ok ok sk ok sk ok ok sk sk ok ok sk ok ok sk ok sk ok sk ok ok sk ok ok ok o sk sk ok ok
B

; lookup expression value (via score time) in expression map

(defmethod lookup-defined-expression ((map map) score-time)
(lookup-defined-expression (lookup-section-containing map score-time) score-time))

(defmethod lookup-defined-expression (section score-time)
(and section
(loop for expression in (all-expressions section)
for map-score-time in (all-score-times section)
when (= map-score-time score-time)
do (return expression))))

(defmethod lookup-expression ((map successive-map) score-time)
(lookup-expression (lookup-section-containing map score-time) score-time))

(defmethod lookup-expression (section score)
(and section
(loop for expression in (all-expressions section)
for expression-next in (rest (all-expressions section))
for score-time in (all-score-times section)
for score-time-next in (rest (all-score-times section))
while (> score score-time-next)
finally (return (interpolate score-time score score-time-next
expression expression-next)))))

o s ok s o o ks ok ok o ok ok ok s ok sk ok sk o ok o ok o o s sk ok o ok o ok o ok sk sk sk ok ok o ok s sk o sk ok sk ok ko ok sk sk sk ok ok o ok s sk o sk sk ok ok sk ok sk sk sk ok ok o ok sk ok sk o sk sk ok ok ok ok ok ok ok
5

; lookup score time in a monotone rising expression map

(defmethod in-section-inverse? ((section section) expression)
(and expression (<= (first (expressions section))
expression
(or (next-expression section)
(last-element (expressions section))))))

(defmethod lookup-inverse ((map S-map) expression)
(loop for section in (sections map) thereis (lookup-inverse section expression)))

(defmethod lookup-inverse ((section section) expression)
(and (in-section-inverse? section expression)
(loop for expression-next in (rest (expressions section))
for score-time in (score-times section)
for score-time-next in (rest (score-times section))
while (> expression expression-next)
finally (return (list score-time score-time-next)))))

o sk o ok sk ok ok sk ke ok ok ke ok ok sk ok ok s ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk ke ok ok sk sk sk sk ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk sk ok ok sk ok ok sk ok ok sk ok ok sk sk ok ok
B

; mapping through expression maps, naamgeving !!

(defmethod map-map (fun (map map))
(make-map (loop for section in (sections map) collect (funcall fun section))))

o sk ok ok ok ok ok sk ke sk ok ke ok ok sk ok sk sk ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk sk sk sk sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk ok sk sk sk sk ok sk ok ok sk ok ok sk ok ok sk sk ok sk ok
>

; mapping through filtered expression maps

(defmethod with-filtered-null-expression (fun (map map))
(Cunfilter-null-expression (funcall fun (filter-null-expression map))
(filter-null-expression-out map)))

(defmethod filter-null-expression ((map map))
(map-map #'filter-null-expression map))

(defmethod filter-null-expression ((section section))
(make-new-section-from-pairs section
(loop for expression in (expressions section)
for score-time in (score-times section)
when expression
collect (list score-time expression))))

(defmethod filter-null-expression-out ((map map))
(mapcar #'filter-null-expression-out (sections map)))

(defmethod filter-null-expression-out ((section section))
(loop for expression in (expressions section)
for score-time in (score-times section)
for index from @
unless expression
collect (list index score-time)))

(defmethod unfilter-null-expression ((map map) rejections)
(make-map (mapcar #'unfilter-null-expression (sections map) rejections)))

(defmethod unfilter-null-expression ((section section) removed)
(if removed
(make-new-section-from-pairs section
(loop with expressions = (expressions section)
with score-times = (score-times section)
for index from @
while (or score-times removed)
when (and removed (= index (caar removed)))
collect (list (second (pop removed)) nil)
else collect (list (pop score-times) (pop expressions))))
section))

o sk ok ok ok ok ok sk sk sk ok ke sk ok sk ok sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

« 3% 3k ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok b ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok b ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok b ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok ok ok %k ok ok k ok
5

; expression

« 3% 3k ok ok ok ok ok ok ok sk 3k ok ok ok sk ok b ok ok sk ok b ok ok 3k 3k b ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok b ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok %k ok ok kok
5

o sk ok ok ok ok sk sk sk sk ok ke sk ok sk ok sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk sk sk ok ke sk sk sk sk ok sk sk ok s sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

(defclass expression OQ)

o sk ok ok ok ok sk ok sk sk ok sk sk ok sk sk sk sk sk ok s sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk sk sk ok ok sk sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk ok sk ok
B

; nil and rests carry no expression, nil expressions and sections are not set

(defmethod get-expression ((object null)(expression expression)) nil)
(defmethod get-next-expression ((object null)(expression expression)) nil)

(defmethod get-expression ((object PAUSE)(expression expression)) nil)
(defmethod set-expression ((object PAUSE)(expression expression) value) nil)

(defmethod set-expression ((object musical-object) expression value-or-section) nil)
(defmethod get-next-expression ((object musical-object)(expression expression))
(get-expression (right object) expression))

« 3 3k ok ok ok ok ok ok ok sk ok b ok ok sk ok b ok ok sk 3k ok ok ok sk ok ok ok ok Sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok %k ok ok ok ok
5

; get expression of notes

(defmethod get-notes-expression ((object musical-object) (expression expression))
(loop for note in (all-notes object)
collect (fetch-expression note expression)))

(defmethod set-notes-expression ((object musical-object) (expression expression) values)
(loop for note in (all-notes object)
for value in values
do (set-expression note expression value)))

o sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok s ok ok sk sk ok sk ok ok sk ok ok sk sk ok ok sk ok sk sk ok ok sk ok ok sk sk ok sk ke ok sk sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk sk sk ok sk ok s ok ok sk ok ok ok ok sk sk ok ok
)

; propagate expression (interpolated, truncating-shift and shift)

(defmethod propagate-interpolated ((object S) old-begin new-begin old-end new-end expression)
(loop for component in (components object)
do (propagate-interpolated component old-begin new-begin old-end new-end expression)))

(defmethod propagate-interpolated ((object P) old-begin new-begin old-end new-end expression)
(loop for component in (components object)
do (propagate-truncating-shift component (save-- new-begin old-begin) new-end expression)))

(defmethod propagate-interpolated ((object collateral) old-begin new-begin old-end new-end expression)
(let* ((ref (fetch-expression (main object) expression))
(shift (save-- (interpolate old-begin ref old-end new-begin new-end) ref)))
(propagate-interpolated (main object) old-begin new-begin old-end new-end expression)
(propagate-shift (ornament object) shift expression)))

(defmethod propagate-interpolated ((object NOTE) old-begin new-begin old-end new-end expression)
(set-expression
object expression
(interpolate old-begin (fetch-expression object expression) old-end new-begin new-end)))

(defmethod propagate-interpolated ((object PAUSE) old-begin new-begin old-end new-end expression))

+ s ks o o ook ok ok o ok ok ok s sk sk o ok o ok o o s sk ok o ok o ok s sk sk ok ok ok o ok s sk o sk sk ok ok ok sk sk sk ok ok o ok s sk sk o sk ok ok ok ok sk sk sk ok ok o ok ok ok sk ok sk sk ok ok o ok ok ok ok
5

; propagate-truncating-shift

(defmethod propagate-truncating-shift :around ((object musical-object) shift end expression)
(when shift (call-next-method)))

(defmethod propagate-truncating-shift ((object multilateral) shift end expression)
(loop for component in (components object)
do (propagate-truncating-shift component shift end expression)))

(defmethod propagate-truncating-shift ((object collateral) shift end expression)
(propagate-shift (ornament object) shift expression)
(propagate-truncating-shift (main object) shift end expression))

(defmethod propagate-truncating-shift ((object NOTE) shift end expression)
(set-expression object
expression
(save-min (save-+ (fetch-expression object expression) shift) end)))

(defmethod propagate-truncating-shift ((object PAUSE) shift end expression))

+ s ks oo ook ok ok o ok ok ok s ok sk sk o ok ok ok o ks sk ok o ok ok ok o sk sk o ok ok ok o ok s sk o sk o sk ko ok sk sk sk ok ok o ok s sk sk sk ok ok ok ok sk o sk sk ok ok o ok ok ok sk ok sk sk ok o ok ok ok ok
5

; propagate-shift

(defmethod propagate-shift :around ((object musical-object) shift expression)
(when shift (call-next-method)))

(defmethod propagate-shift ((object structured) shift expression)
(loop for component in (components object)

do (propagate-shift component shift expression)))

(defmethod propagate-shift ((object basic) shift expression)
(set-expression object
expression
(save-+ (fetch-expression object expression) shift)))

o sk ok ok ok ok sk ok sk sk ok ke sk ok sk sk sk ke sk ok s sk ok s sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk ok ok sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk sk ok sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
B

; onset timing
5 AR Rk ok ok ks ks ks ks ko ks ok sk ok sk ok skl ok sk ok ok sk ook skl ok sk ok ok sk ok koo

(defclass expressive-timing (expression) ()
(defclass onset-timing (expressive-timing) ())
(defclass basic-asynchrony (onset-timing) ()
(defclass basic-tempo (onset-timing) ()

(defclass estimate-onset-timing (onset-timing estimate-mixin) ()) ;for use-timing in articulation

o sk ok ok sk ok ok sk sk ok sk sk ok ok sk ok sk sk ok ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk ke sk ok sk ok sk sk sk ok sk sk ok sk sk ok s sk ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk ok sk sk sk sk ok sk ok ok sk ok ok sk sk ok sk sk ok sk ok
5

; get expressive timing

(defmethod get-expression ((object NOTE) (expression onset-timing))
(perf-onset object))

(defmethod get-expression ((object S) (expression onset-timing))
(get-expression (first (components object)) expression))

(defmethod get-expression ((object P) (expression onset-timing))
(loop for component in (components object)
when (get-expression component expression)
minimize it))

(defmethod get-expression ((object collateral) (expression onset-timing))
(get-expression (main object) expression))

o sk o ok ok ok ok sk ke ok ok ke ok ok sk ok sk sk ok ok s sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk sk ok sk sk ok sk ke sk ok sk sk sk sk ok ok sk sk ok s sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk sk ok sk sk ok sk sk sk ok sk ok ok sk ok ok s sk ok sk sk ok ok
B

; set expressive timing

(defmethod set-expression ((object NOTE) (expression onset-timing) value)
(setf (perf-onset object) value))

(defmethod set-expression ((object S) (expression onset-timing) (section S-section))
(loop for new-expression in (expressions section)

for next-new-expression in (snoc (rest (expressions section)) (next-expression section))

for component in (components object)

do (propagate-interpolated component
(fetch-expression component expression)
new-expression
(fetch-expression (right component) expression)
next-new-expression
expression)))

(defmethod set-expression ((object P) (expression onset-timing) (section P-section))
(loop for new-expression in (expressions section)

for component in (components object)

do (propagate-truncating-shift component
(save-- new-expression

(fetch-expression component expression))

(get-next-expression object expression)
expression)))

(defmethod set-expression ((object ACCIA) (expression onset-timing) (section ACCIA-section))
(propagate-shift (ornament object)
(save-- (ornament-expression section)
(fetch-expression (ornament object) expression))
expression))

(defmethod set-expression ((object APPOG) (expression onset-timing) (section APPOG-section))
(propagate-interpolated (ornament object)
(fetch-expression (ornament object) expression)
(ornament-expression section)
(fetch-expression (right (ornament object)) expression)
(main-expression section)
expression))

o sk o ok sk ok ok sk ok ok ok ke ok ok sk ok sk sk ok ok s sk ok sk ok ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk ke ok ok sk sk sk sk ok ok sk sk ok s sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk sk sk ok sk ok ok sk ok ok s ok ok sk sk ok ok
)

; scale expressive-timing

(defmethod scale-expression ((section P-section)
(expression basic-asynchrony)
factor)

(if (expressions section)
(make-new-section
section

(scale-P-expression-points (expressions section) factor))
section))

(defmethod scale-expression ((section S-section)
(expression basic-tempo)
factor)
(cond ((and (expressions section)(next-expression section))
(scale-S-section-] section factor))
((rest (expressions section))
(scale-S-section-> section factor))
(t section)))

(defmethod scale-S-section-] ((section section) factor)
(make-new-section section (scale-S-expression-points
(snoc (score-times section)(score-offset section))
(snoc (expressions section) (next-expression section))
factor)))

(defmethod scale-S-section-> ((section section) factor)
(make-new-section section
(scale-S-expression-points (score-times section)
(expressions section)
factor)))

(defmethod scale-expression ((section ACCIA-section) (expression basic-asynchrony) factor)
(make-new-section section
(scale-ACCIA-points (main-expression section)
(ornament-expression section)
factor)))

(defmethod scale-expression ((section APPOG-section) (expression basic-tempo) factor)
(make-new-section section
(scale-APPOG-points (ornament-expression section)
(main-expression section)
(next-expression section)
(score-ornament section)
(score-main section)
(score-offset section)
factor)))

« 3% 3k ok ok sk 3k ok ok ok sk 3k ok ok ok sk ok b ok ok sk ok b ok ok sk ok b ok ok sk ok b ok ok sk ok ok ok 3k sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k ok ok ok ok %k ok ok kok
>

(defun scale-P-expression-points (perf-onsets factor)
(let* ((perf-begin (apply #'min perf-onsets))
(perf-iois (mapcar #'(lambda (onset) (- onset perf-begin)) perf-onsets))
(raw-new-perf-iois (mapcar #'(lambda (perf)(scale-expression-lin perf factor))
perf-iois))
(shift (- (apply #'min raw-new-perf-iois)))
(new-perf-onsets (mapcar #'(lambda (ioi) (+ ioi shift perf-begin)) raw-new-perf-iois)))
new-perf-onsets))

(defun scale-S-expression-points (score-times perf-times factor)
(let* ((perf-iois (mapcar #'- (rest perf-times) perf-times))
(score-iois (mapcar #'- (rest score-times) score-times))
(perf-begin (first perf-times))
(perf-end (last-element perf-times))
(raw-new-perf-iois (mapcar #'(lambda (score perf)
(scale-velocity score perf factor))
score-iois
perf-iois))
(new-perf-iois (normalise raw-new-perf-iois (- perf-end perf-begin)))
(new-perf-times (integrate new-perf-iois perf-begin)))
new-perf-times))

(defun scale-ACCIA-points (main-expression ornament-expression factor)
(let* ((expression-interval (- main-expression ornament-expression))
(new-expression-ornament (- main-expression
(scale-expression-lin expression-interval factor))))
(list new-expression-ornament main-expression)))

(defun scale-APPOG-points (ornament-expression main-expression next-expression
score-ornament score-main score-end
factor)

(let* ((score-ornament-ioi (- score-main score-ornament))
(expression-ornament-ioi (- main-expression ornament-expression))
(score-main-ioi (- score-end score-main))

(expression-main-ioi (- next-expression main-expression))

(ornament-tempo (/ score-ornament-ioi expression-ornament-ioi))

(main-tempo (/ score-main-ioi expression-main-ioi))

(relative-tempo (/ ornament-tempo main-tempo))

(new-ornament-tempo (* main-tempo (expt relative-tempo factor)))

(new-expression-ornament-ioi (/ score-ornament-ioi new-ornament-tempo))

(new-expression-ornament (- main-expression new-expression-ornament-ioi)))
(list new-expression-ornament main-expression next-expression)))

o sk ok ok ok ok ok sk sk sk ok ke sk ok sk ok sk sk ok ok s sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk sk ok ke sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

; expression scale methods

(defun scale-velocity (score perf factor)
"Exponential scaling"
(/ score (expt (/ score perf) factor)
)]

(defun scale-expression-lin (perf factor)
"Linear scaling"
(* perf factor))

+ s ks o o ks ok ok ok ok ok ok s ok sk sk o ok o ok o o s sk ok o ok o ok s ok sk sk sk ok ok o ok s sk o sk o sk ok ko ok sk sk sk o ok o ok s sk sk o sk o ok sk ok sk ok sk sk ok ok ok ok ok ok sk ok sk sk ok ok ok ok ok ok ok
5

; stretch expressive-timing

(defmethod stretch-expression ((section S-section)
(Cold S-map)
(new S-map)
(expression onset-timing))
(make-new-section
section
(loop for perf-time in (expressions section)
as (score-begin score-end) = (lookup-inverse old perf-time)
collect (if (and score-begin score-end)
(interpolate (lookup-expression old score-begin)
perf-time
(Lookup-expression old score-end)
(lookup-expression new score-begin)
(Lookup-expression new score-end))
perf-time))))

+ s ks o s ks ok ok ok ok o ok s o sk ok sk ok ok ok ok o o s sk ok o ok o ok s ok sk sk ok ok ok ok ok s sk sk sk ks ok sk sk sk ok ok o ok sk ok sk sk sk ok sk ok sk ok sk sk ok ok o ok sk ok sk ok sk sk ok ok o ok ok ok ok
5

; mixin to estimate expression in case of absence, by linear inter- or extrapolation
R ok Rk R R R R R Rk o R R ok

(defclass estimate-mixin (O)

(defmethod fetch-expression :around ((object musical-object) (expression estimate-mixin))
(or (get-expression object expression)
(estimate-expression object expression)))

(defmethod fetch-expression ((object null) (expression expression)) nil)

(defmethod fetch-expression ((object musical-object) (expression expression))
(get-expression object expression))

(defmethod get-next-expression :around ((object musical-object) (expression estimate-mixin))
(cond ((call-next-method))
((right object)
(estimate-expression (right object) expression))
(t

(estimate-next-expression object expression))))

(defmethod fetch-onset :around ((object musical-object) (expression estimate-mixin))
(fetch-expression object (find-expression 'estimate-onset-timing)))

(defmethod estimate-expression ((object musical-object) (expression expression))
(estimate-context (context-with-expression object expression #'left)
object
(context-with-expression object expression #'right)
expression

)

(defmethod estimate-next-expression ((object musical-object) (expression expression))
(let* ((left (context-with-expression object expression #'left))
(lefter (and left
(left left)
(context-with-expression (left left) expression #'left))))
(when (and left lefter)
(interpolate (score-onset lefter)
(score-offset object)
(score-onset left)
(get-expression lefter expression)
(get-expression left expression)))))

(defmethod estimate-context (left object right (expression expression) first-try)
(Ccond ((and left right)

(interpolate (score-onset left)
(score-onset object)
(score-onset right)
(get-expression left expression)
(get-expression right expression)))

(Cand left (left left) first-try)

(estimate-context (context-with-expression (left left) expression #'left)
object
left
expression nil))

(Cand right (right right) first-try)

(estimate-context right
object
(context-with-expression (right right) expression #'right)
expression nil))

(t nildd)

(defmethod context-with-expression ((object musical-object) (expression expression) direction)
(cond ((get-expression object expression)
object)
((funcall direction object)
(context-with-expression (funcall direction object) expression direction))

(t nildd)

o sk ok ok ok ok ok sk ke sk sk ke ok ok sk ok sk sk ok ok s sk ok sk sk ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk ok sk sk sk sk ok sk sk ok sk ok ok sk ok ok sk sk ok sk ok
>

; keeping articulation invariant: mixin for expressive timing expression
« 3 3k 3k 3k 3k 3k sk ok ok 3k 3k 3k ok ok 3k 3k 3k ok ok 5k 3k sk ok 3k 3k sk sk ok 3k 3k 3k 3k ok ok 3k 3k sk ok 3k sk sk ok ok sk 3k 3k ok ok 3k 3k sk sk ok 3k 3k sk ok sk 3k 3k 3k 3k ok 3k 3k sk ok 3k 3k 3k 3k ok 3k 3k %k 3k ok 3k 3k 3k sk ok 3k 3k 3k 3k ok ok %k %k ok ok %k %k sk ok ok ok
H

(defclass keep-articulation-mixin O)

(defclass keep-overlap-articulation-mixin (keep-articulation-mixin)())
(defclass keep-duration-articulation-mixin (keep-articulation-mixin)())
(defclass keep-proportion-articulation-mixin (keep-articulation-mixin)())

(defmethod articulation ((expression keep-overlap-articulation-mixin))
(find-expression 'basic-overlap-articulation))

(defmethod articulation ((expression keep-duration-articulation-mixin))
(find-expression 'basic-duration-articulation))

(defmethod articulation ((expression keep-proportion-articulation-mixin))
(find-expression 'basic-proportion-articulation))

(defmethod set-map :around ((object musical-object) map (expression keep-articulation-mixin) ground)
(when map
(let* ((parts (find-parts object ground))
(articulation-collections
(loop for part in parts collect (get-notes-expression part (articulation expression)))))
(call-next-method)
(loop for part in parts
for collection in articulation-collections
do (set-notes-expression part (articulation expression) collection))))
object)

o sk sk ok ok ok sk ok ke sk ok ke sk ok sk sk sk sk sk ok s sk ok s sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
B

; resource for expression instances

(defvar *expression-instances*)

(setf *expression-instances* nil)
(defvar *use-expression-resource*)
(setf *use-expression-resource* t)

(defun find-expression (class)
p
(or (and *use-expression-resource*
p
(cdr (assoc class *expression-instances*)))
(make-expression-instance class)))

(defun make-expression-instance (class)
(let ((instance (make-instance class)))
(when *use-expression-resource*
(push (cons class instance) *expression-instances*))
instance))

o sk ok ok ok ok sk ok sk sk ok ke sk ok sk sk sk sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk ok ok sk ok ok sk ok sk sk sk sk sk ok ke sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk sk sk sk ok ok sk sk sk sk ok sk sk ok sk sk sk sk sk ok sk sk ok sk ok
B

; averaging expression
« 3k 3k 3k 3k ok 3k ok ok ok sk sk sk sk ok 3k ok 3k ok ok ok 3k sk ok sk sk sk sk ok 3k 3k ok ok ok ok 3k 3k sk ok sk sk sk sk ok ok ok 3k ok ok ok 3k sk sk sk sk sk sk ok sk ok ok 3k ok ok 3k 3k sk sk sk sk sk 3k ok ok 3k 3k ok ok ok 3k 3k sk ok sk sk 3k ok ok 3k %k %k ok ok %k %k %k sk ok k.
H

(defclass averaging-expression-mixin (O()) ; waarom mixin ??

+ s ks o s ok sk ok ok o ok ok ok s ok sk sk ok ok s ok s o s sk ok o ok o ok s ok sk sk sk ok ok ok ok s sk sk sk ok ok o ok sk sk sk ok ok o ok sk ok sk sk sk o ok ok ok sk o sk sk ok ok o ok sk ok sk ok sk sk o ok o ok ok ok ok
5

; get averaging expression

(defmethod get-expression ((object multilateral) (expression averaging-expression-mixin))
(loop for component in (components object)
when (get-expression component expression)
sum it into total
finally (return (/ total (length (components object))))))

(defmethod get-expression ((object collateral) (expression averaging-expression-mixin))
(get-expression (main object) expression))

« 3% 3k ok ok ok ok ok ok ok sk 3k ok ok ok sk ok b ok ok sk 3k b ok 3k sk ok b ok ok sk ok b ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok ok sk 3k ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok b ok 3k sk ok ke ok 3k sk ok ok ok 3k sk ok ok ok 3k ok ok ok ok %k ok ok ok ok
>

; set averaging expression

(defmethod set-expression ((object multilateral) (expression averaging-expression-mixin)
(section multilateral-section))
(loop for component in (components object)

for new-expression in (expressions section)

do (propagate-shift component
(save-- new-expression

(fetch-expression component expression))

expression)))

(defmethod set-expression ((object collateral)
(expression averaging-expression-mixin)
(section collateral-section))
(propagate-shift (ornament object)
(save-- (ornament-expression section)
(fetch-expression (ornament object) expression))
expression))

o sk ok ok ok ok ok sk sk sk ok sk sk ok sk ok sk sk sk ok sk sk ok s ok ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

; scale averaging expression

(defmethod scale-expression ((section multilateral-section)
(expression averaging-expression-mixin)
factor)
(let* ((mean-expression (mean (expressions section)))
(expression-deviations (mapcar #'(lambda(expression)
(- expression mean-expression))
(expressions section)))
(new-expressions (mapcar #'(lambda (expression-deviation)
(+ mean-expression
(scale-expression-lin expression-deviation factor)))
expression-deviations)))
(make-new-section section new-expressions)))

(defmethod scale-expression ((section collateral-section)
(expression averaging-expression-mixin)
factor)
(let* ((expression-deviation (- (ornament-expression section)
(main-expression section)))
(new-ornament-expression (+ (main-expression section)
(scale-expression-lin expression-deviation factor))))
(make-new-section section
(list new-ornament-expression
(main-expression section)))))

o sk sk ok ok ok sk ok ke sk ok ke sk ok sk sk sk sk sk ok s sk ok s sk ok sk sk ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
B

; stretch averaging expression

(defmethod stretch-expression ((section S-section)
(Cold S-map)
(new S-map)
(expression averaging-expression-mixin))
(make-new-section
section
(loop for expression in (expressions section)
for score-time in (score-times section)
as old-expression = (lookup-expression old score-time)
as new-expression = (lookup-expression new score-time)
as stretched-expression = (if (and old-expression new-expression expression)
(+ expression (- new-expression old-expression))
expression)
collect stretched-expression)))

« 3% 3% ok ok 3k ok ok ok ok ok ok % ok ok sk ok 3k ok ok 3k ok 3k ok ok 3k ok ok ok ok sk ok 3k ok % 3k ok ok ok ok sk ok b ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok % sk ok ok ok 3k 3k ok ok ok 3k sk ok ok ok % ok ok ok ok %k ok ok k ok
5

; articulation
« 3 3k 3k ok 2k 3k ok ok ok ok ok ok ok ok 3k %k 3k ok ok 3k 3k ok % 3k ok 3k ok ok 3k 3k %k ok ok ok 3k % % ok 3k ok k ok ok 3k 3k 3k ok ok ok 3k 3k k 3k 3k 3k K K 3k ok %k 3k 2k ok 3k % 3k ok 3k 3k K ok ok ok %k % ok ok ok 3k 3k 3k ok 3k 3k 3k K ok 3k %k % ok ok ok %k sk k ok ok
H

(defclass offset-timing (expressive-timing) ())

(defclass articulation (offset-timing averaging-expression-mixin)())
(defclass basic-overlap-articulation (articulation)())

(defclass basic-duration-articulation (articulation)())

(defclass basic-proportion-articulation (articulation)())

o sk o ok sk ok ok sk ok ok ok ke ok ok sk ok sk sk ok ok s sk ok sk ok ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk ke ok ok sk sk sk sk ok ok sk sk ok s sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk sk sk ok sk ok ok sk ok ok s ok ok sk sk ok ok
)

(defmethod get-expression ((object NOTE) (expression offset-timing))
(perf-offset object))

(defmethod fetch-onset ((object musical-object) (expression articulation))
(get-expression object (find-expression 'onset-timing)))

o sk ok ok ok ok sk sk sk sk ok ke sk ok sk sk sk sk sk ok s sk ok s sk ok sk sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk ok ke sk sk ke sk ok ke sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

; get articulation

#1
(defmethod get-expression :around ((object NOTE) (expression basic-overlap-articulation))
(when (right object)
(save-- (call-next-method)
(fetch-onset (right object) expression))))

(defmethod get-expression :around ((object NOTE) (expression basic-duration-articulation))
(- (call-next-method)
(fetch-onset object expression)))

(defmethod get-expression :around ((object NOTE) (expression basic-proportion-articulation))
(when (and (fetch-onset object expression)
(right object)
(fetch-onset (right object) expression))
(/ (- (call-next-method)
(fetch-onset object expression))
(- (fetch-onset (right object) expression)
(fetch-onset object expression)))))

|#

(defmethod get-expression ((object NOTE) (expression basic-overlap-articulation))
(when (right object)
(save-- (perf-offset object)
(fetch-onset (right object) expression))))

(defmethod get-expression ((object NOTE) (expression basic-duration-articulation))
(- (perf-offset object)
(fetch-onset object expression)))

(defmethod get-expression ((object NOTE) (expression basic-proportion-articulation))
(when (and (fetch-onset object expression)
(right object)
(fetch-onset (right object) expression))
(/ (- (perf-offset object)
(fetch-onset object expression))
(- (fetch-onset (right object) expression)
(fetch-onset object expression)))))

o sk ok ok ok ok ok sk sk sk ok ke sk ok sk ok sk sk sk ok s sk ok s sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk ke sk ok sk sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

; set articulation

(defmethod set-expression ((object NOTE) (expression basic-overlap-articulation) value)
(when (and (right object) (fetch-onset (right object) expression))
(setf (perf-offset object)
(max (fetch-onset object expression)
(+ (fetch-onset (right object) expression)
value)))))

(defmethod set-expression ((object NOTE) (expression basic-duration-articulation) value)
(setf (perf-offset object)
(+ (fetch-onset object expression)
(max @ value))))

(defmethod set-expression ((object NOTE) (expression basic-proportion-articulation) value)
(when (and (right object)(perf-onset (right object)))
(setf (perf-offset object)
(+ (fetch-onset object expression)
(* (- (fetch-onset (right object) expression)
(fetch-onset object expression))

(max @ value))))D)

o sk ok ok ok ok sk ok sk sk ok sk sk ok sk sk sk sk sk ok s sk ok s sk ok sk sk ok sk ok ok sk sk ok sk ok ok sk sk ok sk ok ke sk sk sk sk ok ke sk sk sk sk ok sk sk ok s sk ok sk sk ok sk sk ok sk ok ok sk sk ok sk sk ok sk ok ok sk sk sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok
>

; empty expression (to recover only score times)
« 3k 3k 3k 3k ok 3k sk ok ok sk sk sk ok ok 3k 3k 3k ok ok 3k 3k sk ok sk sk sk sk ok sk 3k ok ok ok ok 3k 3k sk ok sk sk sk sk ok sk ok 3k ok ok 3k 3k sk sk ok sk sk sk ok ok ok ok 3k ok ok 3k 3k sk ok sk sk sk sk ok ok 3k 3k ok ok ok 3k sk sk ok sk sk sk ok ok ok ok %k ok ok %k %k sk sk ok ok
H

(defclass empty-expression (expression) ())

(defmethod get-expression ((object musical-object) (expression empty-expression)) nil)

+ s ks o s ok sk ok ok o ok ok ok s ok sk sk ok ok s ok s o s sk ok o ok o ok s ok sk sk sk ok ok ok ok s sk sk sk ok ok o ok sk sk sk ok ok o ok sk ok sk sk sk o ok ok ok sk o sk sk ok ok o ok sk ok sk ok sk sk o ok o ok ok ok ok
5

; mixing instantiable classes of expression
Rk ok R R R R R R Rk o R ok

(defmacro class-mixer (&rest class-cocktail-pairs)
(list* 'progl t
(loop for tuples on class-cocktail-pairs by #'cdddr

as name = (first tuples)

as doc = (second tuples)

as cocktail = (third tuples)

collect “(defclass ,name ,cocktail ()
(:documentation ,doc)))))

(class-mixer
tempo " "
(basic-tempo)
asynchrony " "

(basic-asynchrony)

estimate-tempo " "

(basic-tempo estimate-mixin)

estimate-asynchrony " "

(basic-asynchrony estimate-mixin)

keep-overlap-articulation-tempo " "

(basic-tempo keep-overlap-articulation-mixin)

keep-duration-articulation-tempo " "

(basic-tempo keep-duration-articulation-mixin)

keep-proportion-articulation-tempo " "

(basic-tempo keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-tempo " "

(basic-tempo keep-overlap-articulation-mixin estimate-mixin)

keep-duration-articulation-estimate-tempo " "

(basic-tempo keep-duration-articulation-mixin estimate-mixin)

keep-proportion-articulation-estimate-tempo " "

(basic-tempo keep-proportion-articulation-mixin estimate-mixin)

keep-overlap-articulation-asynchrony " "

(basic-asynchrony keep-overlap-articulation-mixin)

keep-duration-articulation-asynchrony " "

(basic-asynchrony keep-duration-articulation-mixin)

keep-proportion-articulation-asynchrony " "

(basic-asynchrony keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-asynchrony " "

(basic-asynchrony keep-overlap-articulation-mixin estimate-mixin)

keep-duration-articulation-estimate-asynchrony " "

(basic-asynchrony keep-duration-articulation-mixin estimate-mixin)

keep-proportion-articulation-estimate-asynchrony " "

(basic-asynchrony keep-proportion-articulation-mixin estimate-mixin)

overlap-articulation " "

(basic-overlap-articulation)

duration-articulation " "

(basic-duration-articulation)

proportion-articulation " "

(basic-proportion-articulation)

estimate-overlap-articulation " "

(basic-overlap-articulation estimate-mixin)

estimate-duration-articulation " "

(basic-duration-articulation estimate-mixin)

estimate-proportion-articulation " "

(basic-proportion-articulation estimate-mixin))

« 3k 3k 3k 3k ok 3k ok ok ok sk sk sk sk ok 3k ok 3k ok ok ok 3k sk ok sk sk sk sk ok 3k 3k ok ok ok ok 3k 3k sk ok sk sk sk sk ok ok ok 3k ok ok ok 3k sk sk sk sk sk sk ok sk ok ok 3k ok ok 3k 3k sk sk sk sk sk 3k ok ok 3k 3k ok ok ok 3k 3k sk ok sk sk 3k ok ok 3k %k %k ok ok %k %k %k sk ok k.
H

« 3 3K 3k 3k 3k 3k ok ok ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k ok 3k 3k 3k K ok ok 3k 3k %k 3k ok ok 3k 3k 3k k 3k 3k ok ok ok 3k 3k %k ok ok 3k 3k 3k 3k k 3k 3k K 3k 3k ok %k 3k ok ok 3k % 3k ok 3k 3k K ok ok 3k %k %k 3k ok 3k 3k % 3k ok 3k 3k 3k ok 3k ok %k %k ok ok %k %k sk ok ok ok
H

; extracting and imposing expression maps of musical objects using expression

« 3 3k 3k 3k 3k 3k ok ok ok 3k 3k ok ok ok 3k 3k %k ok ok 3k 3k 3k 3k 3k 3k 3k ok ok 3k 3k %k ok 3k ok 3k 3k 3k 3k 3k 3k ok ok ok 3k 3k %k ok ok 3k 3k 3k ok 3k 3k 3k K ok 3k ok %k 3k ok ok 3k 3k 3k ok 3k 3k 3k ok ok 3k %k %k 3k ok 3k 3k 3k ok 3k 3k 3k 3k ok ok ok %k %k ok ok %k ok sk ok ok ok
H

+ s ks o s ok sk ok ok o ok ok ok s ok sk sk o ok o ok o o s sk ok o ok o ok s ok sk sk ok ok ok ok ok s sk o sk sk ok ko ok sk sk sk ok ok o ok sk ok sk sk sk ok ok ok sk o sk sk ok ok o ok sk ok sk ok sk sk ok ok ok ok ok ok ok
5

; extracting a expression map

(defmethod get-map ((object musical-object) expression ground)
(make-map (loop for part in (find-parts object ground)
collect (get-section part expression))))

(defmethod get-section ((object musical-object) expression)
(make-section (object-to-section object)
(snoc (mapcar #'score-onset (components object))
(score-offset object))
(snoc (mapcar #'(lambda (component)

(fetch-expression component expression))
(components object))
(get-next-expression object expression))))

« 3% 3% 3k 3k 3k ok ok ok ok ok ok ok ok ok sk ok 3k ok ok 3k ok 3k ok ok 3k ok ok ok ok sk 3k 3k ok ok 3k ok 3k ok ok sk ok 3k ok ok 3k ok ok ok ok sk ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k sk ok ok ok ok dk ok ok ok % sk ok ok ok 3k sk ok ok ok % ok ok ok ok % ok ok ok ok %k ok ok k ok
>

; impose a expression map

(defmethod set-map ((object musical-object) map expression ground)
(loop for part in (find-parts object ground)
for section in (sections map)
do (set-expression part expression section))
object)

o 3ok ok ok ok ok ok ok ok ok ok 3 ok ok 3 ok ok 3 ok ok s ok ok sk ok ok sk ok ok sk ok ok ok ok ok 3k ok ok ok o ok ok 3 ok ok 3 ok ok 3 ok ok 3 ok ok s ok ok sk ok K ok ok ok sk ok ok ok ok ok 3k ok ok sk ok 3 ok ok 3 ok ok o ok ok 3 ok ok o ok ok sk ok ok sk ok ok ok ok
5

« 3 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k 3k 3k 3k 3k 3k ok ok 3k 3k %k 3k ok 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k 3k ok 3k 3k 3k K ok ok 3k %k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 3k ok 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok ok ok %k %k ok %k %k %k sk ok ok ok
H

; operations on expression maps

« 3K 3k 3k 3k 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k 3k 3k 3k 3k 3k ok ok 3k 3k %k ok ok 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k 3k sk 3k 3k 3k K ok ok 3k %k 3k ok ok 3k 3k sk ok 3k 3k 3k ok ok 3k 3k %k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok ok ok %k %k %k %k %k %k sk k ok ok
H

3 3k ok ok sk 3k ok ok ok sk ok ok ok ok sk ok b ok ok Sk ok b ok ok Sk 3k b ok ok sk 3k b ok ok sk 3k b ok ok Sk ok b ok ok sk 3k b ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ke ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok ok k ok ok ok ok k ok ok ok K ok ok ok ok
H

; scale expression map

(defmethod scale-map ((map map) expression factor)
(with-filtered-null-expression #'(lambda (filtered-map)
(scale-filtered-map filtered-map expression factor)) ;??
map))

(defmethod scale-filtered-map ((map map) expression factor)
(map-map #'(lambda (section)
(scale-expression section expression (get-parameter factor (score-onset section))))
map))

+ s ks o sk ok sk ok ok ok ok ok ok s ok sk ok sk ok ok ok ok s o s sk ok o ok o ok s ok sk sk sk ok ok ok ok s sk sk sk ks ok sk sk sk ok ok ok ok sk ok sk sk sk ok ok ok sk o sk sk ok sk o ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok
5

; interpolate S-expression maps

(defmethod interpolate-maps ((mapl S-map) (map2 S-map) factor)
(map-map #'(lambda (section) (interpolate-section section
(filter-null-expression map2)
factor))

map1))

(defmethod interpolate-section ((section S-section)(map S-map) factor)
(make-new-section
section
(loop for score-time in (score-times section)
for expression in (expressions section)
collect (in-between expression
(lookup-expression map score-time)
(get-parameter factor score-time)))))

(defmethod monotonise-map ((map S-map))
(map-map #'monotonise-section map))

(defmethod monotonise-section ((section S-section))
(make-new-section
section
(loop for expression in (expressions section)
when expression
maximize expression into state
and collect state
else collect nil)))

« 3% 3k ok ok sk ok ok ok ok sk ok ok ok ok sk ok b ok ok sk 3k ok ok ok sk ok b ok ok sk ok ok ok ok Sk ok ok ok ok sk ok b ok 3k Sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k ok ok ok ok %k ok ok ok ok
>

; get S-expression maps at sync points

(defmethod get-sync-map ((mapl S-map) (map2 S-map))
(map-map #'(lambda (section) (get-sync-section section map2)) mapl))

(defmethod get-sync-section ((section S-section) (map S-map))
(make-new-section-from-pairs section
(loop for score-time in (all-score-times section)
for expression in (all-expressions section)
as new-expression = (and expression
(lookup-defined-expression map score-time))
when new-expression collect (list score-time expression))))

o sk o ok sk ok ok sk ok ok ok ke ok ok sk ok sk sk ok ok s sk ok sk ok ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk ke ok ok sk sk sk sk ok ok sk sk ok s sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk sk sk ok sk ok ok sk ok ok s ok ok sk sk ok ok
)

; stretch expression map

(defmethod stretch-map ((map successive-map) (old successive-map) (new successive-map) expression)
(let ((filtered-map (filter-null-expression map))
(filtered-old (filter-null-expression old))
(filtered-new (filter-null-expression new))
(removed (filter-null-expression-out map)))
(unfilter-null-expression

(map-map
#'(lambda (section)
(stretch-expression section filtered-old filtered-new expression))
filtered-map)
removed)))

« 3% 3k 3k ok 3k ok ok ok ok sk ok 3k ok ok 3k ok 3k ok ok 3k ok 3k ok ok 3k ok 3k ok ok sk ok 3k ok 3k 3k ok 3k ok % sk ok 3k ok % sk ok 3k ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok % sk ok ok ok % ok ok ok ok 3k ok ok ok ok % ok ok ok ok %k ok ok ok ok
H

« 3 3k 3k 3k ok 3k 3k sk ok sk sk sk sk ok 3k 3k 3k ok ok ok 3k sk ok sk sk sk sk ok sk 3k ok ok ok ok 3k ok sk ok sk sk sk ok ok ok ok 3k ok ok ok 3k sk sk sk sk sk sk ok ok 3k ok 3k ok ok 3k 3k sk ok sk sk sk 3k ok ok 3k 3k ok ok ok 3k sk sk sk sk sk 3k ok ok 3k %k %k ok ok %k %k ok k ok ok
H

; time-changing parameters

« 3k 3k 3k 3k ok 3k ok ok ok sk sk sk ok ok 3k 3k 3k ok ok ok 3k ok ok sk sk sk sk ok sk 3k ok ok ok ok 3k 3k sk k sk sk sk sk ok sk 3k 3k ok ok ok 3k sk sk sk sk sk sk ok ok ok ok ok ok ok 3k 3k sk ok sk sk sk 3k ok ok 3k 3k ok ok ok 3k 3k sk sk 3k sk 3k ok ok 3k ok %k ok ok %k %k k sk ok k.
H

« 3 3k 3k 3k 3k 3k 3k ok ok 3k 3k K ok 3k 3k 3k 3k ok ok % 3k 3k ok 3k 3k k K ok 3k 3k %k ok ok 3k 3k % 3k ok 3k 3k ok ok ok 3k 3k %k ok ok 3k 3k 3k ok ok 3k 3k K 3k 3k ok %k 3k ok ok 3k 3k 3k ok 3k 3k 3k ok ok 3k %k %k ok ok 3k 3k % 3k 3k 3k 3k 3k ok ok ok %k %k ok ok %k %k sk ok ok ok
H

(defun get-parameter (factor score-time)
(if (numberp factor)
factor
(funcall factor score-time)))

(defun make-ramp (x1 x2 yl y2) ; as s-section ??
#'(lambda (x) (interpolate x1 x x2 yl y2)))

« 3k 3k 3k 3k 3k 3k sk 3k ok 3k 3k 3k ok ok 3k 3k 3k ok ok 3k 3k sk ok 3k 3k sk sk ok 3k 3k %k 3k ok ok 3k 3k sk ok 3k 3k sk ok ok 3k 3k 3k ok ok 3k 3k sk sk ok 3k 3k K ok sk 3k %k 3k 3k 3k 3k 3k sk ok 3k 3k 3k 3k ok 3k 3k %k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok ok %k ok ok %k %k sk k ok ok
H

« 3% 3k 3k 3k ok 3k sk ok ok 3k sk ok ok sk 3k ok 3k sk 3k ok 3k sk ok ok sk sk ok ok sk 3k 3k sk 3k ok 3k 3k ok ok 3k 3k ok ok ok 3k ok 3k sk ok ok sk 3k ok 3k sk 3k 3k sk sk ok 3k sk ok ok sk 3k ok ok ok 3k ok 3k sk ok 3k sk ok ok ok 3k 3k 3k ok 3k k 3k sk ok ok sk 3k ok ok ok %k %k Kk k
H

; transformations on musical objects

« 3k 3k 3k 3k ok 3k sk ok ok 3k sk ok ok sk 3k ok 3k sk 3k ok 3k sk ok ok sk sk ok ok sk sk 3k sk ok ok 3k sk ok ok 3k 3k ok ok ok 3k 3k 3k sk ok ok sk sk ok sk 3k 3k 3k sk sk ok 3k sk ok ok sk 3k ok ok sk 3k ok 3k ok ok 3k sk ok ok ok 3k 3k ok ok 3k ok 3k sk ok ok sk 3k ok ok 3k %k %k Kk k
H

« 3k 3k 3k 3k 3k 3k sk ok ok sk sk sk ok 3k 3k 3k 3k ok ok 3k 3k sk ok 3k 3k sk sk ok 3k 3k 3k 3k ok ok 3k 3k sk ok 3k sk sk 3k ok 3k 3k 3k 3k ok 3k 3k sk sk ok 3k sk sk 3k ok 3k ok 3k ok ok 3k 3k sk ok 3k sk 3k 3k ok ok %k 3k 3k ok 3k 5k 3k sk ok 3k 3k 3k ok ok 3k %k %k ok ok %k %k %k sk ok k.
H

; transfer expression transformation

(defmethod transfer ((object musical-object) expression foreground background)
(let* ((foreground-map (get-map object expression foreground))
(background-map (get-map object (find-expression 'empty-expression) background))
(new-background-map (interpolate-maps background-map foreground-map 1)))
(set-map object new-background-map expression background))
object)

+ s ks o sk sk ok ok o ok o ok s ok sk sk o ok ok ok o o s sk ok o ok o ok s ok sk sk ok ok ok ok ok s sk o sk sk ok ko ok sk sk sk o ok o ok sk sk o sk o sk ok ok ok ok sk sk sk ok ok o ok sk ok sk o sk ok sk o ok o ok ok ok ok
5

; scale expression transformation

(defmethod scale ((object musical-object) expression foreground background factor)
(let* ((old-foreground-map (get-map object expression foreground))
(new-foreground-map (when old-foreground-map
(scale-map old-foreground-map expression factor)))
(old-background-map (when background
(get-map object expression background)))
(new-background-map (when old-background-map
(stretch-map old-background-map
old-foreground-map
new-foreground-map
expression))))
(when new-foreground-map
(set-map object new-foreground-map expression foreground))
(when new-background-map
(set-map object new-background-map expression background)))
object)

o sk o ok sk ok ok sk ok ok ok sk ok ok s ok ok s ok ok sk sk ok sk sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk ke ok ok sk sk sk sk sk ok sk sk ok s sk ok sk ok ok sk sk ok ok sk ok sk sk ok sk sk ok ok sk sk ok sk ke ok ok sk ok ok s ok ok s ok ok sk sk ok ok
)

; scale intervoice expression transformation

(defmethod scale-intervoice ((object musical-object) expression
voicel voice2 factor ref)
(let* ((mapl (get-map object expression voicel))
(map2 (get-map object expression voice2)))
(when (and mapl map2)
(let* ((original-sync-mapl (get-sync-map mapl map2))
(original-sync-map2 (get-sync-map map2 mapl))
(new-sync-mapl (monotonise-map (interpolate-maps
original-sync-mapl
original-sync-map2 (* ref (- 1 factor)))))
(new-sync-map2 (monotonise-map (interpolate-maps
original-sync-map2
original-sync-mapl (* (- 1 ref) (- 1 factor)))))
(new-mapl (stretch-map
mapl original-sync-mapl new-sync-mapl expression))
(new-map2 (stretch-map
map2 original-sync-map2 new-sync-map2 expression)))
(set-map object new-mapl expression voicel)
(set-map object new-map2 expression voice2)))
object))

o 3ok ok ok ok ok ok ok ok ok ok 3 ok ok 3 ok ok o ok ok s ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok 3 ok ok 3 ok ok o ok ok 3 ok K 3 ok ok 3 ok ok sk ok K o ok ok sk ok ok ok ok ok ok ok ok ok ok 3 ok ok ok ok ok ok 3 ok ok o ok K 3 ok ok ok ok o ok ok
H

« 3 3k 3k 3k 3k 3k 3k ok ok 3k sk ok ok ok 3k 3k 3k ok ok 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k %k 3k ok ok 3k 3k 3k ok 3k 3k ok ok ok 3k 3k %k 3k ok 5k 3k 3k 3k 3k 3k 3k K 3k ok 3k %k 3k ok 3k 3k 3k 3k ok 3k 3k 3k 3k ok 3k %k %k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k ok %k %k %k %k %k %k %k sk k ok ok
H

; lisp utilities

« 3 3k 3k 3k 3k 3k 3k ok ok 3k 3k ok ok ok 3k 3k 3k >k ok 5k 3k 3k ok 3k 3k 3k sk ok 3k 3k %k ok ok 3k 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k sk sk ok 3k 3k sk ok sk 3k %k 3k 3k ok 3k 3k sk ok 3k sk 3k 3k ok 3k 3k %k 3k ok 3k 3k 3k sk ok 3k 3k 3k ok ok 3k %k %k ok ok %k %k sk k ok ok
H

« 3 3k ok ok ok ok ok ok ok sk 3k ok ok ok sk ok b ok ok sk ok b ok ok 3k 3k ok ok ok sk ok ok ok 3k Sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok b ok 3k sk ok ok ok 3k sk ok ok ok 3k ok ok ok ok %k ok ok kok
H

(defun last-element (list)
(first (last list)))

(defun snoc (list item)
(append list (list item)))

(defun mean (numbers)
(/ (apply #'+ numbers) (length numbers)))

(defun save-min (&rest list)
(let ((new-list (remove nil list)))
(and new-list (apply #'min new-list))))

(defun save-max (&rest list)
(let ((new-list (remove nil 1list)))
(and new-list (apply #'max new-list))))

(defun save-- (&rest list)
(Cand (notany #'null list)
Capply #'- list)))

(defun save-+ (&rest list)
Capply #'+ (remove nil list)))

(defun enforce-limits (minimum x maximum)
(max minimum (min x maximum)))

(defun integrate (list start)
(if (null list)
(list start)
(cons start
(integrate (rest list) (+ (first list) start)))))

(defun normalise (list dur)
(let ((factor (/ dur (apply #'+ list))))
(mapcar #'(lambda(item)(* factor item)) list)))

(defun interpolate (x1 x x2 yl y2)

(cond (Ceql yl1 y2) y1)
(Ceql x1 x2) nil)
((null x) nil)
(Cand x1 (= x x1)) y1)
(Cand x2 (= x x2)) y2)
(Cand x1 x2)
(in-between y1 y2 (/ (- x x1) (- x2 x1))))
(t nild))

(defun in-between (yl y2 a)
(Ccond ((= a 0) y1)
((=a1)y2)
((and y1 y2)
Gyl (% a (- y2 y1))))
(t nil)))

o 3ok ok ok ok ok ok ok ok ok ok 3 ok ok 3 ok ok o ok ok s ok ok sk ok ok sk ok ok sk ok o ok ok ok sk ok ok ok 3 ok ok 3 ok ok 3 ok ok 3 ok ok 3 ok ok 3 ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok sk ok 3 ok ok 3k ok ok ok ok ok 3 ok ok o ok ok 3k ok ok sk ok o ok ok
5

« 3 3k 3k 3k 3k 3k 3k ok ok 3k 3k ok ok ok 3k 3k ok ok ok 3k 3k 3k 3k 3k 3k 3k dk ok 3k 3k %k ok ok ok 3k 3k 3k ok 3k 3k ok ok ok 3k 3k 3k ok ok 3k 3k 3k ok 3k 3k 3k ok ok ok 3k %k 3k 3k 3k 3k 3k sk ok 3k 3k 3k 3k ok 3k %k %k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok ok ok %k %k ok %k %k %k sk ok ok ok
H

; examples

« 3 3k 3k 3k 3k 3k 3k ok ok 3k 3k ok ok 3k 3k 3k 3k ok ok 3k 3k sk 3k 3k 3k 3k sk ok 3k 3k 3k ok >k ok 3k 3k 3k ok 3k 3k K ok ok 3k 3k %k 3k ok 5k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k %k 3k ok ok 3k 3k 3k ok 3k 3k 3k 3k ok 3k %k %k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k ok ok %k %k %k %k %k %k %k k ok ok k.
H

3% 3k 3k ok sk ok ok ok ok sk ok ok ok ok sk ok b ok ok sk ok b ok ok sk ok b ok ok sk ok ok ok ok Sk ok ok ok ok sk ok ok ok ok sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok ok ok 3k sk ok b ok 3k sk ok ok ok ok sk ok ok ok 3k ok ok ok ok % ok ok k k-
>

#1

(defun metre-example (O
(S 'bars
(P 'bar
(S "melody
(PAUSE :name 'pause :score-dur 1/4)
(NOTE :name 64 :score-dur 1/8
:perf-onset .30 :perf-offset 0.5 :dynamic .7))
(S '"accompagniment
(PAUSE :name 'pause :score-dur 3/8)))
(P 'bar
(S 'melody
(APPOG 'appogiatura
(NOTE :name 64 :score-dur 1/8
:perf-onset .550 :perf-offset .680 :dynamic .75)
(NOTE :name 55 :score-dur 1/4
:perf-onset .675 :perf-offset 1.133 :dynamic .7))
(NOTE :name 55 :score-dur 1/8
:perf-onset 1.125 :perf-offset 1.475 :dynamic .7))
(S 'accompagniment
(NOTE :name 38 :score-dur 1/8
:perf-onset .725 :perf-offset .90 :dynamic .6)

(NOTE :name 43 :score-dur 1/8
:perf-onset .95 :perf-offset 1.2 :dynamic .6)
(NOTE :name 47 :score-dur 1/8
:perf-onset 1.150 :perf-offset 1.475 :dynamic .7)))

(P 'bar

P

(S "melody
(ACCIA 'acciaccatura
(NOTE :name 59 :score-dur 1/16
:perf-onset 1.600 :perf-offset 1.7 :dynamic .65)
(NOTE :name 57 :score-dur 1/8
:perf-onset 1.625 :perf-offset 1.880 :dynamic .7))
(NOTE :name 55 :score-dur 1/8
:perf-onset 1.880 :perf-offset 2.256 :dynamic .6)
(NOTE :name 57 :score-dur 1/8
:perf-onset 2.256 :perf-offset 2.647 :dynamic .65))
(S '"accompagniment
(P 'chord
(NOTE :name 38 :score-dur 3/8
:perf-onset 1.725 :perf-offset 2.500 :dynamic .7)
(NOTE :name 42 :score-dur 3/8
:perf-onset 1.775 :perf-offset 2.500 :dynamic .65)
(NOTE :name 48 :score-dur 3/8
:perf-onset 1.800 :perf-offset 2.500 :dynamic .7))))
"bar
(S 'melody
(NOTE :name 55 :score-dur 3/8
:perf-onset 2.425 :perf-offset 4 :dynamic .7))
(S 'accompagniment
(P 'chord
(NOTE :name 43 :score-dur 3/8
:perf-onset 2.500 :perf-offset 4 :dynamic .6)
(NOTE :name 47 :score-dur 3/8
:perf-onset 2.550 :perf-offset 4 :dynamic .7)
(NOTE :name 50 :score-dur 3/8
:perf-onset 2.580 :perf-offset 4.5 :dynamic .65))))))

(defun background-example ()
(P 'fragment

(s

'melody
(PAUSE :name 'pause :score-dur 1/4)
(NOTE :name 64 :score-dur 1/8
:perf-onset 0.3 :perf-offset 0.5 :dynamic .7)
(APPOG 'appogiatura
(NOTE :name 64 :score-dur 1/8
:perf-onset .550 :perf-offset .680 :dynamic .75)
(NOTE :name 55 :score-dur 1/4
:perf-onset .675 :perf-offset 1.133 :dynamic .7))
(NOTE :name 55 :score-dur 1/8
:perf-onset 1.125 :perf-offset 1.475 :dynamic .7)
(ACCIA 'acciaccatura
(NOTE :name 59 :score-dur 1/16
:perf-onset 1.600 :perf-offset 1.700 :dynamic .65)
(NOTE :name 57 :score-dur 1/8
:perf-onset 1.625 :perf-offset 1.880 :dynamic .7))
(NOTE :name 55 :score-dur 1/8
:perf-onset 1.880 :perf-offset 2.256 :dynamic .6)
(NOTE :name 57 :score-dur 1/8
:perf-onset 2.256 :perf-offset 2.647 :dynamic .65)
(NOTE :name 55 :score-dur 3/8
:perf-onset 2.425 :perf-offset 4 :dynamic .7))
'accompagniment
(PAUSE :name 'pause :score-dur 3/8)
(NOTE :name 38 :score-dur 1/8
:perf-onset .725 :perf-offset .90 :dynamic .6)
(NOTE :name 43 :score-dur 1/8
:perf-onset .950 :perf-offset 1.2 :dynamic .6)
(NOTE :name 47 :score-dur 1/8
:perf-onset 1.150 :perf-offset 1.475 :dynamic .7)
(P 'chord
(NOTE :name 38 :score-dur 3/8
:perf-onset 1.725 :perf-offset 2.500 :dynamic .7)
(NOTE :name 42 :score-dur 3/8
:perf-onset 1.775 :perf-offset 2.500 :dynamic .65)
(NOTE :name 48 :score-dur 3/8
:perf-onset 1.800 :perf-offset 2.500 :dynamic .7))
(P 'chord
(NOTE :name 43 :score-dur 3/8
:perf-onset 2.500 :perf-offset 4 :dynamic .6)
(NOTE :name 47 :score-dur 3/8
:perf-onset 2.550 :perf-offset 4 :dynamic .7)
(NOTE :name 5@ :score-dur 3/8
:perf-onset 2.580 :perf-offset 4.5 :dynamic .65)))))

(scale

(scale

(scale

(scale

(metre-example)
(find-expression 'tempo)
(Chas-name? 'bars)

nil

2

(metre-example)
(find-expression 'asynchrony)
(has-name? 'bar)

nil

2)

(background-example)
(find-expression 'tempo)
Chas-name? 'melody)

nil

2)

(background-example)
(find-expression 'tempo)
Chas-name? 'melody)
(has-name? 'accompagniment)

2)

