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ABSTRACT

This paper is a report of ongoing research on the compu-
tational modeling of beat induction which aims at achiev-
ing a better understanding of the perceptual processes
involved by ordering and reformulating existing models.
One family of rule-based beat induction models is
described (Longuet-Higgins and Lee, 1982; Lee, 1985;
Longuet-Higgins, 1994), along with the presentation of
analysis methods that allow an evaluation of the models
in terms of their in- and output spaces, abstracting from
internal detail. It builds on work described in (Desain
and Honing, 1994b). The present paper elaborates these
methods and presents the results obtained. It will be
shown that they can be used to characterize the differ-
ences between these models, a point that was difficult to
assess previously. Furthermore, the first results of using
the method to improve the existing rule-based models
are presented, by describing the most effective version of
a specific rule, and the most effective parameter settings.

INTRODUCTION

Beat induction is the process in which a regular
isochronous pattern (the beat) is activated while lis-
tening to music. This beat, often tapped along by

musicians, is a central issue in time keeping in
music performance. But also for non-experts the
process seems to be fundamental to the processing,
coding and appreciation of temporal patterns. The
induced beat carries the perception of tempo and
is the basis of temporal coding of temporal pat-
terns. Furthermore, it determines the relative
importance of notes in, for example, the melodic
and harmonic structure.

There are a number of aspects that make beat
induction a process that is hard to model computa-
tionally. Beat induction is a fast process. Only after
a few notes (5-10) a strong sense of beat can be
induced (a “bottom-up” process). Once a beat is
induced by the incoming material it sets up a persis-
tent mental framework that guides the perception
of new incoming material (a “top-down” process).
This process, for example, facilitates the percept of
syncopation, i.e., to “hear” a beat that is not carried
by an event. However, this top-down processing is
not rigidly adhering to a once established beat-per-
cept, because, when in a change of meter the evi-
dence for the old percept becomes too meager, a
new beat interpretation is induced. This duality,
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where a model needs to be able to infer a beat from
scratch, but also to let an already induced beat per-
cept guide the organization of more incoming ma-
terial, is hard to model. This might be an explana-
tion for the wide variety of computational
formalisms that have been used to capture the pro-
cess. Next to rule-based and symbolic search mod-
els, optimization, neural nets, and coupled oscilla-
tor systems have been used extensively (see Desain
and Honing, 1994a for an overview of these models).
This diversity makes it difficult to compare and
evaluate them. Another problem is that the models
implicitly address different aspects of the beat-
induction process. For instance, some models
explain the formation of a beat concept in the first
moments of hearing a rhythmical pattern (initial
beat induction), some model the tracking of the tem-
po once a beat is given, and others cover beat induc-
tion for cyclic patterns only.

This paper is part of a larger study that aims at
achieving a better understanding of the beat induc-
tion process by ordering and reformulating the dif-
ferent models and the subprocesses involved. We
restrict ourselves here to presenting the analysis of
the family of rule-based models of initial beat
induction.

RULE-BASED MODELS

Although symbolic rule-based models are not
much en vogue anymore, rule-based models for
initial beat induction pioneered the field of compu-
tational modeling of rhythm perception and per-
form amazingly well. Longuet-Higgins & Lee
(1982) propose a rule-based model of beat induc-
tion that was unique at the time, because of its
incremental nature and its focus on the initial
stages of beat induction. In this paper we will com-
pare the Longuet-Higgins & Lee (1982) model to
two recent refinements of the original, i.e., Lee
(1985) and Longuet-Higgins (1994). They will be
referred to as LHL82, L85, and LH94. Related
rule-based models are described in Lee (1991) and
Scarborough, Miller & Jones (1992), but they will
not be described in this paper since they are mod-
els of meter induction. However, the first an exten-
sion of L85, the second is an extension of LHLS2.

All three models take note duration values as
input (expressed as integral multiples of a 16th-
note) rather than, for example, attempting to identi-
fy the note onsets in an expressive real-time perfor-
mance. They initially assume the beat to be equal
to the time interval between the first two onsets,
and then work their way through the incoming
material, shifting, doubling and stretching the
beat. Each model postulates a state variable (the
current beat hypothesis) and a small set of rules
(test-action pairs) in which the test consists of a
predicate on the rhythmic pattern and the current
beat hypothesis, and the action modifies this beat
hypothesis.

An example

As a concrete example, consider the musical frag-
ment in Figure 1 showing a trace for a specific
rhythmical pattern 3 1 6 23 1 6 2 3 1) for the
LHL82 model. Time is read from left to right in dis-
crete time steps, and from top to bottom in compu-
tation steps. The top line shows the input pattern
in a time grid notation (with each “|” marking a
note onset). The LHL82 model consists of only
five rules: INITIALIZE, STRETCH, UPDATE,
CONFLATE, and CONFIRM. For the pattern in
Figure 1 the INITIALIZE rule makes the beat
equal to the first note. Then the STRETCH rule
recognizes a note (i.c., the third) that is longer that
the note beginning on the end of the beat and
extends the beat such that it coincides with the
beginning of that note. The UPDATE rule is the
next to fire, since that same note is even longer
than the beat. This rule shifts the beat to the begin-
ning of that long note. Because at the end of the

INITIALIZE
STRETCH
UPDATE
CONFLATE
STRETCH
CONFIRM

Fig. 1. A computation trace of the processing of the
pattern (316231623 1) by the LHL82 mod-
el, showing subsequent modifications of the
beat hypothesis (Musical time from left to right,

computation steps from top to bottom).
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next beat there is a note, the CONFLATE rule will
fire, making the beat twice as long. Then, once
more, the STRETCH rule fires and makes the beat
so long that the CONFIRM rule stops further pro-
cessing. The resulting beat for the pattern in Figure
1 is 12 time units long and 4 time units shifted
with regard to input (an upbeat), the first beat being
on the third, long note.

Shared framework

All three theories make use of the same notion of a
current beat hypothesis and a set of rules that
changes it. Many temporal patterns are treated dif-
ferently by the three rule-based models and yield a
different beat. Accordingly, different assertions
about the state maintained during processing can
be made for the different models. Note that in these
programs some rules have the same name (e.g.,
UPDATE) but a different definition.

For LH94 the beat is always equal to or larger
than the longest note in the pattern, while this is
not necessarily the case for L85 and LHLS82. For
LHL82 and L85 the beat always grows (or stays
the same duration) during processing, while for
LH94 the beat sometimes can become smaller. For
LH94 the end of the current beat hypothesis is
always on a note, while this is not necessarily the
case for L85 and LHLS2.

It is hard to get firm conclusions about the behav-
ior of the models by studying the detailed workings
of the rules on a small set of musical examples,
since the interaction between the rules is quite
complex. A formal analysis of these models in the
form of assertions and invariants, can be given
once the models are sufficiently formalized. This
was not as strait forward as expected, because of
the present state of the models.

Status of the theories

LHLS82 describes a beat induction theory with a
collection of musical examples and computation
traces, along with a clear description of the rule-
set that made up the original program. Some rules
where not described in a formal way, and interac-
tions between the rules were not made explicit,
and therefore had to be rationally reconstructed.
The original program that was used to generate
the output was not available anymore.

L85 describes a “paper and pencil” model of beat
induction —it was never implemented. Several
unformalized aspects, as well as interactions
between the rules unforeseen by the author (Lee,
personal communication) had to be filled-in, to be
able to produce an implementation that could repli-
cate the examples given in L85. Its informal presen-
tation has also led to different implementations
that give different results (see e.g., Essens, 1995,
for an alternative interpretation).

LH94 is a refinement of LHLS82, in the sense that
some rules were combined and unformalized parts
were made explicit. A small computer program in
POP-11, describing the model, was made available
by its author. The (modified) theory behind the
program is not yet published.

Time scale of the input representation
Although at first impression, one would define the
time scale used in these models as a discretized
time grid in which each time interval is expressed
as a multiple of a short time quantum, on closer
inspection one discovers that the actual models do
not rely on such a quantum. They never use the
granularity of the time grid, but only require exact
arithmetic for calculating if a note happens on a
certain position in time and for deciding if a cer-
tain time duration is longer than another one. With-
out any change in the formalism the model could
deal with, for instance, all times expressed as rela-
tive to the first note duration. In that sense their
behavior is independent of global tempo. However,
the parameters of the models, that are expressed in
the arbitrary units of the time grid, control, for
example, if a beat is long enough to be accepted.
Furthermore, because in all the examples given in
LHL82 the rhythms are represented on a time-
grid with sixteenth note as time unit, the param-
eters can be assumed as well to be represented on
a scale of score note durations (in quarter notes).
There are several difficulties that arise when
interpreting these rule-based theories as models
for beat induction. A first question that arises is,
when is a beat a proper beat, and when just an
intermediate state of computation? LH94 makes
this explicit and makes a distinction between un-
confirmed beats (i.e., an ongoing, yet incomplete
state) and confirmed beats (see Fig. 1, last line).
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After a beat is confirmed the processing stops. For
LHLS?2 in certain states no other rule can ever fire
anymore (i.e., the model becomes “deaf”): an
implicit confirmation takes place. L85 is a special
case, in the sense that it keeps processing its input,
the SHIFT rule can keep moving the processing
window through the material. Furthermore, this
model has the somewhat awkward characteristic —
from a perceptual standpoint —, that the UPDATE
rule sometimes has to wait forever until it can exe-
cute its action (e.g., the pattern 23 2 2 2..).

Control structure and formalization

A complete and comparable formalization of the
models has to take the control structure of the
rule-based systems into account as well. The order
and moment at which the rules fire is crucial, these
issues are often left undiscussed in the presentation
of the original models.

LHLS82 is presented in a window-based way, each
rule may look for occurrences of its trigger pattern
somewhere in the range of the current beat hypoth-
esis. The rules are executed in a specific order until
one can fire, this rule then performs its associated
action (i.e., change the phase and/or duration of
the beat), after which the next rule in the series is
allowed to fire on an updated window. When no
rule can fire anymore on the window the model
stops further processing.

In LH94 the processing was implemented in an
event-based way, with each note onset in the input
constituting an event. For each event all rules are
given the chance to fire in a fixed order. When no
rule fires a next event is processed. The CONFIRM
rule explicitly stops the processing of input.

L85 is also described as an window based model,
with all rules given a chance to fire before the win-
dow is shifted by the current beat duration by the
SHIFT rule.

It is not a trivial task to make assertions and
proof invariance over these different interpretations
of the model’s control structure. However, it turned
out that all three models can be formalized such
that they can operate in either window-based or
event-based mode, as well as in a grid-based
mode. The latter mode makes clear how early cer-
tain decisions can be made (e.g., is the present
note longer then the beat?), an issue that becomes

important in real-time applications and in predict-
ing the times at which changes in beat response
can be made. Furthermore, the control structure
can be adapted such that for each processing step
(be it window-based, event-based or grid-based)
only one rule is allowed to fire and apply its action,
which makes it much easier to define assertions
about the state after each processing round. A full
presentation and proofs will be given in a forth-
coming paper.

STATISTICAL ANALYSIS

An alternative to a formal analysis is a statistical
analysis, studying the global behavior of the models
in a rough statistical way. Such an analysis charac-
terizes the behavior of each model as the partition-
ing of the set of all possible inputs into classes of
patterns that yield the same result and comparing
these partitions. Different analyses can be made
depending on the way the results are interpreted.
In this paper we can only show a small selection
of the full matrix (analysis method x input set x
model).

Sets

The universes of temporal patterns that we used
are a collection of nested, abstract sets that are
combinatorially complete (we only use two of
them in this paper), and one large corpus of com-
posed rhythms. The first test-set is the universe of
all grid-based temporal patterns of a certain dura-
tion (referred to as All). This set is almost com-
pletely free of assumptions about musical knowl-
edge and structure and will encompass, next to
rhythms that can be easily remembered and per-
formed musically, many examples that will be hard
to interpret rhythmically at all. Removing all pat-
terns from the previous set that cannot be gener-
ated from a simple metrical grammar (using only
binary and tertiary subdivisions) gives us the subset
of strictly metrical sequences (referred to as Metric).
These patterns have a simple metrical interpreta-
tion in which each durational interval fits one level
of a metrical hierarchy directly. The patterns are
strictly metrical in the sense that there are no syn-
copations or tied notes. Note that they can still be
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ambiguous —some patterns can be generated from
different meters. Finally, to stay in line with the
beat induction literature that shows a preference
for musical ditty’s, and especially anthems, we use
the set of all national anthems (Shaw & Coleman,
1960; referred to as Anthems). This set consists of
ca. 90% duple (70% is in 4/4) and 10% triple
meters.

Monte Carlo method

Theoretically, the combinatorially complete test
sets could be fed into the models and the exact
size of each class of same-beat patterns calculated.
However, the enormous size of the sets prohibits
this (e.g., the size of the set of all grid-based tem-
poral patterns of duration # is in the order 2"). We
used a practical way to yield reasonable estimates
by Monte Carlo simulation: sampling the sets in a
fair way and counting the response categories that
arose. This method form the basis for a global sta-
tistical characterization of the behavior of the mod-
els. The sample size used for the set of all patterns
and the set of strict metric sequences is 1000. The
size of the Anthems set is 105, this set is always
used as a whole.

All

c

Fig. 2. Venn diagram of the corpora of temporal pat-
terns as used for the analyses. The set of all
grid-based temporal patterns (4//), the set of
strictly metric sequences (Metric), and the set of

national anthems (@nthems).

BEAT-SPACE

First we will try to characterize the models in terms
of their output for the different test sets, to get an
insight in the range of the beat durations and
phases, and to identify possible preferences. We
will use Beat-space diagrams to show the distribu-
tion of beat duration for specific sets of patterns
(see Fig. 3). The diagram shows the output of the
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Fig. 3. Beat-space diagrams for the three models for

the set of all patterns. (Proportion of patterns
yielding a beat with a specific duration vs. beat
duration counted in sixteenth-notes).
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three models for the set of All rhythms. The x-axis
indicates beat duration (in grid units that can be
interpreted as a sixteenth note), the height of a
bars indicates the proportion of patterns that
yielded that beat duration. The subdivisions in
each bar indicate the distribution of phases of the
beat, with zero phases represented at the bottom
of the diagram (later we will look at these phases
in some more detail). For example, it can be seen
in Figure 3a that the LHL82 model assigns to
about 12% of all patterns a beat of duration 16.

If we look more globally at this measurement, we
can see that the LHL82 model prefers beat dura-
tions of 16 grid-units or longer, L85 has some pref-
erence for beat durations in the range of 18 to 24
grid-units, and LH94 has a decaying preference
for longer beat durations. Note that the distribution
of durations is quite smooth (most notably for
L85), which is surprising, considering the sym-
bolic, discrete nature of the models. Furthermore,
it can be observed that L85 has an relatively even
distribution of phases, while LHL82 and LH94
have a preference for low phases.

For the Metric and the Anthems set (not shown)
these spaces are sparser, with clearer differentiated
beat durations, although the contour and overall
distribution of phases stays the same. Next, we will
take a closer look at these phases.

PHASE-SPACE

Phase-space diagrams depict the distribution of
phases for a specific set (see Fig. 4 for the Phase-
space for the set of all patterns). The x-axis indi-
cates the phase duration (e.g., 0 is no upbeat, 2 is
an upbeat of 2 grid-units), while the height of a
bar indicates the proportion of a specific phase
duration with respect to size of the whole pattern
set.

In Figure 4 it can be seen that both LHL82 and
LH94 have a clear preference for beats with zero
phase, i.e., an interpretation without upbeats. This
in contrast with L85 that has no particular prefer-
ence for a particular phase. (Note that, because
the beat-space was only analyzed for patterns with
a duration of upto 35 gridunits, for L85 and LH94
the proportion of phases do not add to 1).
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Fig. 4. Phase-space diagrams for the three models for
the set of all patterns. (Proportion of patterns
yielding a beat with a specific phase vs. beat
phase counted in sixteenth-notes).

AGREEMENT

Having shown how the overall distributions of the
model’s results differ, the question arises what the
relation between is between the results of the mod-
els for a specific input pattern? For that, patterns
are taken from the sets and are categorized into
four classes: the class of patterns for which the
three models agreed on the same beat, the three
classes of patterns for which only two models
agreed, and the class of patterns that resulted in
three different answers. We allowed an integer mul-
tiple of the beat duration to count as an agreed
beat, provided that the phases matched as well.
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The result of this measurement can be depicted
in a histogram. The x-axis indicates the duration
of the pattern that is used as input to the model.
The height of the bar shows the proportion of pat-
terns of that duration for which at least two models
agreed. The black part of each bar indicates the
proportion of patterns for which all three models
agreed on the beat. As an example, consider Figure
5a. It can be seen that for all patterns of duration
25 there is 30% agreement between all three (the
black part of each bar ), and about 85% agreement
between at least two models (the total bar height).

The diagrams show in general that agreement
between the three models (black part of the bars)
increases with the amount of musical structure in
the sets, upto 50% for the Anthems set. This may
indicate that part of the differences of the models
are exhibited mainly when they are applied outside
the domain of input patterns for which they were
conceived. Furthermore, it can be observed that
the agreement between LHL82 and LH94, with
L85 differing, increases with longer patterns (light
gray part of the bar).

SPEED OF BEAT INDUCTION

Now we have shown how the models can arrive at
the same or different answers, we come to the ques-

tion how fast these answers are arrived at. Both
LHL82 and LH94 have an explicit point at which
processing stops and a result is returned. The dis-
tribution of the proportion of patterns yielding
such a confirmed beat can be depicted as a func-
tion of the pattern length. However, since it is quite
natural to need more time to establish a long beat,
a different, and possibly fairer representation of
the same data is made by expressing the time
needed for confirmation relative to the duration of
the beat found. What this analysis (see Fig. 6) shows
is that, roughly spoken, both models can establish
a beat of a certain duration relatively fast, on the
basis of between two and three beats worth of
rhythmical material. However, in some cases
LHLS82 needs a much longer fragment to confirm
a beat. Here it turns out that the models clearly pre-
dict a very fast beat induction process that con-
trasts with, for example, the much larger amount
of material that coupled oscillator models (e.g.,
Large & Kolen, 1994) need to establish locking.

CORRECTNESS

Now we have looked at the speed at which the
models arrive at an answer, we should look at its
correctness. We plan to compare the models to
empirical data of human subjects, but for some of
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Agreement diagrams for the different sets. (Proportion of pattens for which the models yield compatable beats



36 P. DESAIN AND H. HONING

0.5 LHL82

0.0 _\/\—4_\'—_‘____4
1.5 2.0 2.5 3.0 35 4.0

LH%4

35 4.0

Fig. 6.

Moment of confirmation for the sets All (black line), Metric (gray line), and Anthems (light gray line). (Pro-

portion vs. moment of confirmation relative to the beat-length).

the subsets a rough approximation of the correct-
ness of the results can already be derived. For the
set of strictly metrical patterns, correct beats can
be defined to be those that fit one of the metrical
levels of one of the generating meters. For the set
of national anthems, a correct beat can be defined
as a beat that is compatible with the meter notated
in the score. For short patterns that form the begin-
ning of more than one anthem we counted a beat
as correct whenever if fitted the meter of one of
those anthems. Because this measure is not very
stringent, it may not be valid as an judge of an
absolute level of performance, but it can function
well in comparisons between models.

The set of anthems may very well contain exam-
ples where the meter is conveyed by the melody
and not by the metrical structure. In that sense the
measure of correctness could underestimate the
performance of the models, which have access to
the rhythm only.

It is easy to yield small beats that conform the
meter of a piece at a very low level (these beats are
much more likely to fit than large ones, because
large beats have more degrees of freedom in choos-
ing a phase). And it is difficult to judge the merit
of a beat that, though having a proper phase, spans
several bars. Therefore the correctness was differen-
tiated according to the metrical level of the result-
ing beat.

In Figure 7 these measures are depicted as histo-
grams. The x-axis indicates the duration of the pat-
tern that is used as input to the model (in eighth
notes). The height of the bar shows the proportion
of patterns that yielded a beat compatible with the
notated meter of any of the anthems starting with
that pattern. The black part of each bar indicates

the proportion of hyper-meter results, the beat
spanning more than one measure. Below that, the
dark gray area indicates the proportion of patterns
that yielded a proper bar as output of the model.
The gray area below that indicates the proportion
of correct beat-level answers, i.e., the bar divided
by 2 or 3 according to the time signature. Finally,
the light-gray areas indicate answers that can still
be considered correct but that aligned with lower
levels of the metrical hierarchy. As an example,
consider Figure 7a in which it can be seen that
L85 rated 36% of the patterns with a duration of
24 eighth-notes correctly. About 15% were rated
correctly at the bar level, about 15% at the beat
level, 3% above the bar level and 3% below the
beat level.

In these figures it can be seen how in subsequent
stages of the processing the beat hypothesis shifts
upwards through the metrical levels, becoming
larger and larger. The overall performance that the
models arrive at finally is quite remarkable, consid-
ering that in some anthems the meter might be
communicated through the melodic structure,
information that is ignored by these models. The
LHL82 model reaches about 60% of correct
answers at the bar or beat level and seems to have
the best performance (but see the section on opti-
mal parameter settings).

However, these absolute figures have to be read
with caution. They have to be compared, e.g., to
the likelihood of arriving at a correct answer by
guessing. This baseline can easily be established by
doing the same measurement for a statistical model
that only knows the distribution of bars and beats
in the total set and randomly selects a duration
and a phase according to that distribution. The cor-
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Correct-level diagrams for the three rule-based models and three baseline models using the Anthems set.

(Proportion of patterns yielding a correct beat vs. pattern duration counted in eighth-notes).

rectness of this model is shown in Figure 7f, it
forms a reference for judging the correctness of
the models.

Another baseline that can be used is a model that
just assumes that the first note is the proper beat.
This hypothesis, which all models use initially,
turns out to be not such a bad one, as is shown in
Figure 7d, it does yield a correct result in about
35% of the cases. However, these results only reach
the beat level in 10% of the cases.

A third baseline assumes that the longest note
encountered is the proper beat. And in one way or
another the detection of long notes play a crucial
role in each model. However, after some initial suc-
cess this strategy turns out to be quite unsuccessful,
it even performs below chance level, as can be seen
in Figure 7e.

RULE CALLS

Before studying the contribution of the individual
rules to the model’s performance one needs to
check how often the different rules fire? In Figure

8 the proportion of cases in which each rule fires
is given for each model and each set.

It can be seen how the LHL82 LONGNOTE rule
applies relatively infrequent compared to the other
rules (LONGNOTE fires when a note is longer
than twice the current beat). The STRETCH rule,
in which a long note is encountered that does not
align with the beat, applies more often while pro-
cessing random rhythms than in the structured
sets. Conversely, the CONFLATE rule, that fires
whenever a note is encountered on a next beat, is
more often called in the Metric and the Anthems
set. Both results confirm the expectation about the
amount of musical structure in the different sets.

ROBUSTNESS

After we know how often the rules are applied, it can
be questioned how crucial the application of a rule’s
action is when its matching pattern is encountered
in the input. It can be argued that meaningful musi-
cal material does contain many redundant cues to
the meter (as can be experienced when tuning the
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Fig. 8.  Proportion of rule calls for the three models for

the set of all patterns (top), the Metric set (mid-
dle), and the Anthems set (bottom).

radio and finding oneself suddenly listening to the
middle section of an anthem), and the system might
get a second chance at getting it right. This issue
was resolved in the form of a measurement that
gave one rule a change of not firing in a situation
where it otherwise would. In Figure 9 the resulting
performance (the proportion of correct answers at
the bar or beat level) is given as a function of the
chance that a rule fires when it should. The correct-

ness measurement was taken at the point where pro-
cessing stopped, this is why the level of correctness
when all rules fire as they should (at 1.0) cannot be
directly compared to the final correct proportion at
the bar and beat level in Figure 7a, 7b and 7c.

It turns out that all three model behave quite
robustly under this condition, even in case of the
complete removal of a rule. Overall, there seem to
be multiple cues in the music that allow a later
repair of the situation caused by a broken rule.
This holds especially for the CONFLATE rule
which can double the beat. Furthermore, it is can
be observed that STRETCH has quite an important
role in both LHL82 and LH94. Remarkably, the
performance of L85 improves when the STRETCH
and the UPDATE rule are not always used. And
indeed L85 seems to take long notes too seriously
and often changes the beat at syncopations.

EFFECTIVENESS OF THE RULES

We will continue focussing in more and more on the
rules themselves and next address the question how
beneficial the actions of the different rules are when
they fire. This was measured by counting the cases
in which a rule succeeds in repairing a wrong beat,
i.e., the beat being wrong just before and correct (at
any level) just after the application of a rule. This
number can then be compared to the number of
cases in which a rule’s action breaks the beat, i.e., it
was correct before and wrong after application. In
Figure 10 the proportion of these cases is shown for
each rule (given that it fires). Both the INITIALIZE
and CONFIRM rule are not depicted in Figure 10.
The former because it invariably repairs a missing
beat hypothesis into a correct one in 70% of the
cases, the latter because it doesn’t alter the beat
hypothesis, and therefore it never breaks nor repairs.

It can be seen that the STRETCH rule does a
good job in repairing wrong beat hypotheses. The
UPDATE rule in LH82 never breaks or repairs the
beat since it simply shifts the beat. The absence of
a rating for LONGNOTE in LH82 is due to an arti-
fact in our measurement procedure. The large pro-
portion of cases in which the UPDATE rule breaks
a correct beat hypothesis in model LH94 is puz-
zling and topic of further study.
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Fig. 9. Robustness for the three models for the Anthems

cation probability of each rule).

ISTHERE A BEST UPDATE RULE?

In the models three different UPDATE rules are
used. The UPDATE rule is intended to skip over
upbeats. All UPDATE rules fire whenever they

“ O Break O Repair "
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L85
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STRETCH
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Fig. 10. Effectiveness of the rules for the three models
for the Anthems set. (Rule vs. proportion of rule
calls that are breaks and repairs of the current
beat hypothesis).

set. (Proportion of patterns yielding a correct beat vs. appli-

encounter a relatively long note (under specific
conditions) in the input. But all models apply a dif-
ferent action in that case. LHL82 shifts the beat,
maintaining its duration. The LH94 model shifts
and elongates the beat to the onset of the next
note. The L85 model shifts and elongates the beat
to the onset of the next note that happens to fall
on a beat. These actions are illustrated in Figure
11. It shows an example pattern (a line is a note
onset, the curves indicate the beats) before the
UPDATE rule fires, and the situation after it has
done its action.

To test the different UPDATE rules, we trans-
planted the different variants into the three models.
Because in LHLS82 the function of the UPDATE
rule is closely intertwined with the LONGNOTE
rule, it was transplanted both with and without the
LONGNOTE rule to the other two models. In two
cases the transplanted LONGNOTE rule was

before UPDATE iem—m

after UPDATE
LHLS2 EEE——
L85 ]
LH94 E—

Fig. 11. Definitions of the UPDATE rule.
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made inoperative by the rest of the rule set (the
UPDATE rule from L85 makes the beat so long
that LONGNOTE never applies anymore). These
combinations were eliminated. The resulting rule
cocktails were all tested for correctness, measuring
at the point of confirmation for LHL82 en LH94
and at the end of the anthem for L85. The results
are given in Figure 12, with the subdivisions of the
bars as used in the figures for the Correct-level
analysis: black is above, dark gray on and gray just
below the bar level (i.e., beat level), light gray being
the correct answers below the beat level.

The results are aligned such that the proportions
can be compared per rule-cocktail for the beat
and bar levels (gray and dark gray). The correctness
at the sub-beat levels (light gray) and hyper-bar
levels (black) constitute less useful answers.

In Figure 12 we can see that LHL82 obtains the
best score (i.e., 55% correct at the beat and bar
level), followed by LHLS2 with the UPDATE rule
form LH94. No difference between the perfor-
mance of LH94 and of the LH94 model with a
transplanted UPDATE en LONGNOTE rule from
LHL82. However, these results were calculated
with the parameter settings supplied by the author,
and different settings yield a different result, as will
be shown next.

WHAT ARE THE OPTIMAL PARAMETER
SETTINGS?

Finally, we will use the correctness analysis (consid-
ering only bar and beat level answers as correct) to
search for the optimal parameter setting of the
models, i.e., the setting that produces the highest
proportion of correct results.

We will show here the results for the LHL82 and
LH94 model (the L85 model has no parameters).
In Figure 13 the performance of the models is
shown as function of their parameters. The LHL82
model, which was described in the literature with
an unformalized “near-beginning” predicate that
controlled whether the update rule is still allowed
to fire, was augmented with an update-interval
parameter that specified this point in time.

The LHL82 model achieves an optimal perfor-
mance with the maximum-beat parameter (which
controls whether beats may still be conflated) set
around 20 sixteenth notes (original parameter set-
ting is 30 sixteenth notes) and the update-interval
parameter (which controls until when the UPDATE
rule still allowed to fire) set around 16 sixteenth
notes (no value given in the original model). The
optimal performance level then rises to about 60%
correct at the bar or beat level. The LH94 model

LHL82 T
LHL82 + UPDATE-L85 T
LHL82 + UPDATE-LH94 —+

L85 T
L85 + LONGNOTE + UPDATE-LHL82 +
L85 + UPDATE-LHL82 +

185 + UPDATE-LH94 T

LH%4 +
LH94 + LONGNOTE + UPDATE-LHL82 -+
LH94 + UPDATE-LHL82 +

LH94 + UPDATE-L85 +

LHL82 + UPDATE-LHLE2 T .|

W hyper-bar levels
W barlevel
M beat Jevel
O sub-beat fevels

Fig. 12.
ing a correct beat vs. rule cocktails).

Correctness of the rule-cocktails and the original models for the Anthems set. (Proportion of patterns yield-
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Fig. 13. Parameter-spaces for the Anthems set (gray = original setting, black = optimal setting). (Proportion of pat-

terns yielding a correct beat vs. parameter values).

yields its best performance with the minimum-beat
parameter (which prohibits the confirmation of
small beats) set at 6 sixteenth notes (original
parameter setting is 8 sixteenth notes) and the
maximum-updatable-beat parameter (until when
the UPDATE rule still is allowed to fire) set at 6
sixteenth notes (original parameter setting is 4 six-
teenth notes). The level then rises to 80% correct,
which makes this model an improvement indeed.
(A larger section of the parameter-space will be
given in a future paper).

CONCLUSION AND FUTURE RESEARCH

We also hope to have shown that these methods are
a promising way of characterizing the behavior of
computational models of beat induction. Using
these methods we were able to answer a set of ques-
tions that could not have been addressed otherwise.
Our plans are to extend this method to families of
models that are based on alternative formalisms.
Furthermore, we plan to elaborate a perceptual
measure of correctness that is based on empirical
data. After a further round of formalization we
will attempt to generalize the idea of rule cocktails
to systems that have their rules specified in the
form of a formal pattern-matching language, such
that the members of this family may be enumerated
and tested, possibly using genetic algorithms. The

rule-based models, even though they are simple
and ignore effects of like tempo, timing, melody
and harmony, turn out behave surprisingly well.
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