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Abstract

Measurements of the perception and production of simple rhythmic patterns have been shown

not to be in line in some cases. In this study it is demonstrated that a Bayesian approach

provides a new way of understanding this difference, by formalizing the perceptual5

competition between mental representations and assuming possible non-uniform a-priori

probabilities of the rhythmic categories. Thus we can relate the two kinds of information and

predict perception data from production data. Using this approach, the contrast between

rhythm perception and production data, taken from different studies in the literature, was

shown to almost disappear, assembling independent prior probabilities from counts of patterns10

in corpora of musical scores, or from a theoretical measure of rhythmic complexity. The

success of this Bayesian formalization may be interpreted as an optimal adaptation of our

perceptual system to the environment to in which the produced rhythms occur.
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Introduction

Temporal patterns

Processing sequences of short time intervals plays an important role in our everyday

life, for instance, in picking up stress patterns in conversation and in experiencing music. The

importance of studying time relations as a mental phenomenon had already been brought up5

by the end of the 19th century (Jastrow, 1890). Since then perception of time and action in

time has attracted much empirical work (e.g., Fraisse, 1984).

Sequences of time points, marked by events, i.e., clicks or onsets of notes, are the

domain of these studies, though they are usually specified as a sequence of time-intervals

between events (interonset-intervals). In musical scores, the notation of time intervals that10

constitute a rhythm is based on simple integer relations, and rhythm can indeed be represented

as a sequence of integers. The term rhythm will in this paper be used to mean such symbolic

sequences. However, deviations from these perfect ratios in the performance of a musical

score are usually large and cannot be interpreted entirely as noise. They partially constitute

intended timing patterns that can communicate the structure of the piece (Sloboda, 1985). In15

this study the term performance will mean a sequence of real time intervals that carries both

the rhythm and the expressive deviations.

Humans have a highly developed cognitive system for processing these sequences.

The complexity of the mechanism stems from the fact that the two domains of information

interact: a symbolic representation for coding rhythmic structure and a way to represent the20

small continuous deviations that make up the expressive performance. Note that the same

rhythmic sequence can be played with different kinds of expression, for example, it can be

made to sound swinging or laid-back by introducing small deviations from strict mechanical

timing. Thus a notion of best, perfect, or ideal performance of a rhythm can never exist: it
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depends on the chosen style and the interpretation. Although both a symbolic discrete code

and continuous information is communicated when a rhythm is performed and subsequently

perceived, both types of information become indistinguishable by being combined before they

are transmitted through the same one-dimensional channel as a sequence of time points. Thus

a large deviation in timing may very well upset the perception of the rhythmic structure itself.5

There has been some evidence for categorical perception of rhythm. This process of

perceiving the rhythmic structure for a performance is characterized by an increased

sensitivity for detecting performance differences near the boundaries of the categories. Clarke

(1987) conducted such experiments and showed the existence of categorical boundaries

between specific rhythmic patterns. He furthermore demonstrated that metric context (triple10

vs. duple) causes a shift in the position of the boundary. Schulze (1989) examined rhythmic

categorization using a different experimental setup, including different tempi. He observed

that subjects were able to identify the rhythms reasonably well, in spite of tempo variation.

Desain & Honing (2003) specified the systematic mapping of continuous time intervals to

rhythms for three-interval patterns and showed that the way categories are formed is affected15

by metric context. But in all these studies it is quite obvious that, while perceiving the

rhythmic structure of a performance, the continuous information is still accessible, as it

remains possible to perceive the expressive character of the performance.

In studies of music performance and expressive timing it has been shown that there is

no neutral, inexpressive way in which only the symbolic structural part of a rhythm can be20

communicated. Besides, expressive timing is not a random deviation from mechanical

performance but has a certain regularity. In general, systematic deviations are observed (e.g.,

Gabrielsson, 1999; 2003) usually linked to the structural units in the piece (bars and beats,

phrases, voices) (Clarke, 1985; Palmer, 1997; Sloboda, 1985). Several studies showed that

playing a deadpan performance, without any expressive deviation, is not even possible at all25
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(Palmer, 1989). Repp (1992; 1995; 1999) has shown that deviations from a mechanical

performance that are in accordance with expected regularities are harder to detect. These

findings suggest that expressive timing is obligatory, inherent in the musical performance in a

systematic way, and that our cognitive system even seems to require it.

5

The relation between rhythm perception and production

There have been many production studies in which rhythm has been characterized as

expressive renditions of sequences of integers, either with strictly controlled experimental

material (Gabrielsson, 1974), for full music performances (Timmers, 2002), or somewhere in

between (Repp, Windsor & Desain, 2002). The perceptual topic of the distribution of10

performance timing that allow for perception of a specific rhythmic structure has received less

attention, but has been investigated as well (Clarke, 1987; Desain & Honing, 2003; Schulze,

1989). Non-zero mean time deviations from strict mechanical timing are commonly reported.

It comes as a surprise however, that the reported means of the deviations from strict

mechanical timing are often not consistent between perception and production studies.15

Consistency of perception and production would be an obvious assumption if we

communicated with others while producing rhythm, as well as listened to ourselves. Much

classical work on the processing of rhythm perception and production has been based on this

assumption (e.g., Eisler, 1976), but often studies focus on one of the two processes only. That

might explain why the inconsistency has been overlooked for a long time. However, for the20

past years there are studies in which the two processes are studied in conjunction (Drake,

1993a; Povel, 1981; Repp, 1992; 1995; 1998; Sternberg Knoll & Zukofsky, 1982) and they

report that observed values of rhythm perception and production are not always consistent.

For example, Sternberg et al. (1982) found that the durational ratios of perceived two-interval
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rhythms (using a perceptual judgment task) and those of produced rhythms are different,

especially for short intervals (an example of discrepancy can be found in the later section of

this paper in Figure 6). The perceptual deviations were found toward enhancing the contrast

between two intervals while the production tendency was towards assimilation of two

intervals. Thus, a perceived rhythmic category seems to occupy a different region of the space5

of all possible performances as its performed counterpart. Taken at face value, this curious

fact constitutes counterevidence for theories that postulate perception and production

processes as closely integrated.

Sternberg et al. (1982) proposed a model in which rhythm perception and production

tasks share a common analog representation but contain several internal transformations of the10

temporal patterns. The model does not require the two tasks to share these transformations,

which accounts for the discrepancy. However, there have been more claims to associate

characteristics of perception and production for understanding the cause of this discrepancy.

For instance, some authors postulate as reason for a deviation from the mechanical timing in

rhythm production that we compensate for peculiarities of our perceptual system; we might15

compensate for a perceptual tendency to hear intervals short by playing them longer (Drake,

1993a; Ihre, 1992; Penel & Drake, 1998; 1999). Others claim that it is the other way around,

perception is constrained by production. For example, the learning of musical production

evokes musical expectation which interact with the way the listeners perceive temporal

patterns (Repp, 1992). Yet another explanation states that perception and production are not in20

a causal relation, but both interact with each other in relation to the musical structure; both

tendencies found in the perception and production are restricted by the musical structure itself

(Repp, 1995). However, none of these theories can adequately explain and predict the

differences found yet.
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There may be a more fundamental issue which needs to be addressed when rhythm

perception and production is compared, which lies in the presence or absence of competition

between the mental codes for different rhythms and the possible non uniform nature of the

competition.

5

Rhythm perception and production tasks

Rhythm perception and production are quite different tasks. In rhythm production, one

mental representation of a rhythmic code is active. Its repeated realization, via a motor

program, yields a distribution around a certain timing pattern. In rhythm perception, the space

of possible timing patterns is probed. The stimulus is presented and a rhythmic code needs to10

be chosen as response. Several codes may be possible candidates for a certain stimulus. Thus

in a perceptual task the mental representations are in competition. In a production task this is

not the case, the choice of the code to be activated is clear, as it is usually presented in the

instruction.

There is more to this difference. In production the way rhythms are activated is15

simpler because only the target rhythm is selected and has to be performed. However, in

perception mental codes for rhythms are in competition to be selected as a perceived rhythm

and a representation that is more stable or simple, even if it constitutes a less close fit, may

prevent a closer but less stable one from being chosen. Furthermore, this competition may

also be biased on the response side because in selecting an unlikely rhythm, one that is not20

often heard may be not an optimal choice. This means that certain, commonly occurring

rhythms attract more responses (the areas in performance space that represent these rhythmic

categories are larger) than others: the competition in perception may well be biased.
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The difference in task characteristics can, in a very fundamental way, influence the

distributions of the empirical data. This means that comparing means and variances of

perception and production data, as for example in Sternberg et al. (1982), may not lead us to

valid conclusions. We will introduce the necessary probabilistic method, Bayesian modeling,

to address this issue and check whether this solution indeed works well on the empirical data.5

Bayesian modeling

A Bayesian approach

In the Bayesian approach, the probability of a hypothesis being true given an actual

observation is derived from the probability of the observation given that the hypothesis is true.10

In the calculation the a priori probability of the hypothesis, in the context of all possible

hypotheses, is taken into account. A Bayesian approach in perception and cognition was first

introduced in signal detection theory, which was developed to investigate optimal strategies

for the detection of signals in the presence of noise (Green & Swets, 1996; Tanner & Swets,

1954). Since then, the quantitative application of Bayesian approach has been applied in15

diverse areas of research.

The hypothesis that biological perceptual systems can be explained using a Bayesian

approach has been tested in the field of visual perception with much success (Knill &

Richards, 1996). For example, Bayes rule was used to give precise predictions about the

perception of visual movement (Weiss, Simoncelli & Adelson, 2002) and it provided a basis20

for the explanation of visual illusions (Geisler & Kersten, 2002).

The power of Bayes rule has been fully exploited in Bayesian inference in more

complex domains (these can be formalized by so-called graphical modeling; see Jensen,

2001). It has even been proposed as a general processing method for cognition, modeling up
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and downward streams of information (Dayan, Hinton & Neal, 1995). Furthermore, often an

optimal (perceptual) strategy can be deduced. However, in our proposal only a simple

application of Bayes rule is needed to relate two conditional probabilities.

In producing a temporal pattern, a rhythm is provided, as symbolic code or musical

score, and the conditional probability that a specific performance pattern arises, given this5

score, is estimated from repeated trials or from responses of a pool of subjects. In perceiving a

rhythm, a temporal pattern is presented as performance and the subject is required to identify

the rhythm (the score). The conditional probability that a score is perceived, given this

performance, is estimated from the responses. Bayes rule relates these two quantities,

formalizing the notion of non-uniform competition. It does so by the multiplication of the10

production distributions by, possibly non-uniform, a priori likelihoods for the rhythms

themselves, followed by a subsequent re-normalization. This transformation of production

data should, according to Bayes rule, be equal to the perception data, as will be shown in

detail later. Thus the Bayesian relationship highlights both in what way rhythm perception

and production data are the same–as one is derivable from the other, and in what respect they15

are different, as the observed distributions are transformed versions of each other.

Considering the priors in a purely probabilistic interpretation, the familiarity of

rhythms can be estimated by measuring frequency of occurrence information, e.g. from

corpora of musical scores and estimates of the amount of exposure of the subject to these

pieces. We will describe this in detail later.20

Taken in a pragmatic, non-probabilistic way priors may be used to reflect something

else: the fact that some patterns are cognitively simpler or easier to code and memorize than

others. Simplicity measure may not be similar to a familiarity estimate, because likelihood of

rhythms may be expected to be related to complexity by a bell-shape, as composers tend to

shy from both too simple and too complex rhythms just like in visual art, where patterns with25
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a medium complexity tend to be appreciated as more interesting or beautiful (Berlyne, 1971;

Birkhoff, 1933; but see Boselie & Leeuwenberg, 1985).

Even though from a strict probabilistic stance it is clear that likelihood is the concept

needed for a correct application of Bayes rule, the question whether likelihood or simplicity is

the most important concept for encoding mental representations is still an open one (van der5

Helm, 2000). If simplicity would indeed be the central factor in choosing among competing

representations, what kind of structure would we expect the set of priors to have, and which

temporal patterns can be considered to be simpler? Below we will review some of the

literature on these issues.

10

Rhythmic complexity in perception and production

It is well documented that temporal patterns that can be represented as small integer

ratios are easier to process than ones needing higher ratios. It was found that spontaneous

rhythmic patterns, those produced without an indication of specific rhythmic structure and

tempo, are typically made-up of only two interval durations whose subsequent ratio is roughly15

around 2:1 (Fraisse, 1946; 1956; see Clarke, 1999 and Fraisse, 1982 for a summary). Also in

Povel (1981) it was shown that the reproduction of two interval patterns (ranging from 1:4 to

4:5) was strongly distorted in the direction of 1:2. The same effect has been found in other

experiments (Essens, 1986; Essens & Povel, 1985; Summers, Bell & Burns, 1989; Summers,

Hawkins & Mayer, 1986). Some studies show a preference for duple subdivisions as20

compared to triple subdivisions (Drake, 1993b) predicting e.g., a higher simplicity for 1:2

than for 1:3. Furthermore, it has been shown to become difficult to maintain a clear distinction

of duration patterns even for expert musicians when they are forced to produce a complex
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rhythm at a very fast speed (Peper, Beek & van Wieringen, 1995; Repp et al., 2002). This can

be predicted by a theoretical account of the complexity of ratios.

One problem in formalizing a notion of rhythmic complexity is the interaction

between the rhythmic structure of the pattern (intervallic structure) and its metrical

interpretation (hierarchical structure), an aspect often implicit in, or induced by, a temporal5

pattern. Timing of the production in musical performance usually varied depending on the

position in the metric context (e.g., Gabrielsson, Bengtsson, & Gabrielsson, 1983). Most

approaches to rhythmic complexity combine information theoretic and perceptual factors

(Pressing, n.d.; Tanguiane, 1993; Shmulevich & Povel, 2000). Alternatively, derived or

indirect measures could be considered, such as the amount of syncopation. For instance,10

Longuet-Higgins & Lee’s (1984) measure of syncopation strength indicates the amount of

syncopation of a rhythmic pattern, given a certain metrical interpretation. A more syncopated

pattern could be considered more complex. Nevertheless, because these theories define

complexity with regard to a given meter, they cannot be used in our study because in the

experiments the data were obtained without control for meter.15

There are other hypotheses regarding the complexity of ratios of temporal patterns,

which may be formalized as a set of priors in a Bayesian approach. The purely numerical

notion of a so-called Farey tree which is sometimes applied to explain the human ability to

process different temporal ratios is a good candidate. For example, Peper et al. (1995)

demonstrated transitions of the ratio of different tapping rates realized by both hands at the20

same time (bimanual tapping ratio) according to this Farey tree. The Farey tree yields a

ranking of the complexity of ratios, according to the depth in a tree. The complexities increase

the further we move from the root, see Figure 1. Note that we present hierarchical ratios

defined as the duration of first interval divided by the total duration of the pattern (e.g., 1/2
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signifies two equal durations, i.e. 1:1, and 3/4 is used instead of 3:1). Note that the

hierarchical durational ratio is always between 0 and 1 in this manner.

<Figure 1>

5

Next to a theoretical notion such as the Farey tree, we need to look at familiarity of

rhythmic patterns. Although estimating a subject's prior exposure to various rhythms is an

impossible task, counting the rhythms in a corpus of musical scores may be taken as a first

approximation to likelihood of a rhythm. As the rhythm perception and production data are

usually gathered for a fixed number of notes within a repeating time-interval (beat or bar), the10

counting in scores has to take into account only n-note patterns that span such a unit.

Furthermore, the indicated tempo in the score guides the selection of the metric unit to

consider, as it should be roughly the same duration as the unit used in the perception and

production experiments, because both in rhythm perception and production tempo matters.

15

Two interval rhythms, notation and formalism

For clarity the formalisms used will be based on two interval temporal patterns.

Generalization to higher dimensions is straightforward. Let us first characterize a two-interval

score rhythm. Assume three successive rhythmic events (note onsets) at score-time 

€ 

z1, 

€ 

z2 and

€ 

z3, counted in arbitrary units (

€ 

z ∈ Ν ). These three points specify two successive note20

durations (

€ 

z2 − z1 and 

€ 

z3 − z2) and one hierarchical ratio 

€ 

c = z2 − z1( ) z3 − z1( )  of the first note's

duration interval with regard to the duration of the whole sequence. Each possible rhythm in

this domain is thus uniquely identified by a positive rational ratio 

€ 

c ∈ Q with 

€ 

0 < c <1, the

rhythmic code or category, and we will use this ratio 

€ 

c  as the name of a rhythmic structure.
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This is irrespective of the notational level (e.g. both the sequence of two quarter notes and of

two eight notes form the ratio 1/2).

Next define a two-interval performance 

€ 

t . Assume three successive temporal events

(onsets) at real time 

€ 

x1, 

€ 

x2  and 

€ 

x3  (e.g., in seconds). These three time points specify two

successive inter-onset intervals (

€ 

x2 − x1 and 

€ 

x3 − x2) and one hierarchical ratio5

€ 

t = x2 − x1( ) x3 − x1( )of the first interval with regard to the duration of the whole sequence.

Each possible performance is thus uniquely identified by a real ratio 

€ 

t ∈ R  with 

€ 

0 < t <1. We

will use this ratio as a label for a performance.

In a production task a rhythmic structure 

€ 

c  is provided as stimulus or instruction, and

a performance 

€ 

t  is produced as response. In a perception task a performance ratio

€ 

t  is10

presented as stimulus and a rhythmic ratio 

€ 

c  is required as response.

A production dataset consists of a number of probability densities over the domain of

performance ratios, one for every rhythm 

€ 

c  considered. In the top panel of Figure 2 this is

illustrated in a schematic way. Each curve represents the probability for a specific

performance t given the instructed rhythm 

€ 

c . Thus this dataset specifies 

€ 

p(t | c)1 the15

conditional probability of a performance given a rhythmic instruction. Note that as the curves

are densities, the surface area under each equals one. Because the raw data of a production

experiment consists of sets of 

€ 

t  collected for each 

€ 

c , the density curves will need to be

estimated from these sets by constructing a histogram or fitting a theoretical continuous

distribution.20

A perception dataset consists of a number of probability curves over the domain of

performance ratios, one for every rhythm 

€ 

c  as illustrated in the bottom panel of Figure 2.

                                                  
1 More formally correct would be to present the conditional probabilities as 

€ 

p(T |C = c j ) , thus a Bayes rule as

€ 

P(C = cj |T) = p(t |C = cj) × p(C = cj) / p(t) . However we opt for the shorter notation.
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Each curve represents the probability for a specific response rhythm 

€ 

c , given the presented

performance 

€ 

t . These curves as not unlike the receptive fields in visual perception theories or

the tuning curves in the domain of auditory perception. Thus this dataset specifies 

€ 

p(c | t)  the

conditional probability for a perceived rhythm 

€ 

c  given a performance 

€ 

t . Note that as the

curves are probabilities, not densities, here the sum of all of them equals one for each value of5

€ 

t . Thus at each 

€ 

t  the perception data specifies a discrete probability density over the

responses. Because the raw data of a perception experiment consists of sets of 

€ 

c  collected for

each 

€ 

t , the probabilities simply reflect (are estimated by) the response proportions.

A prior dataset consists of a set of a priori likelihoods of occurrences, one for each

rhythmic ratio 

€ 

c . It is notated as 

€ 

p(c)  and reflects the, possibly non-uniform, exposure to10

different rhythms.

With these definitions in place it is possible to define the relation between the

constructs using Bayes rule.

<Figure 2>15

Bayesian modeling provides a framework for reasoning with uncertainty. Central is

the notion of conditional probability, denoted as 

€ 

p(a b) , which expresses the probability of 

€ 

a

occurring when it is given that 

€ 

b occurs. Bayes rule relates the probabilities 

€ 

p(a b) , 

€ 

p(b a) ,

€ 

p(a)and 

€ 

p(b) .20

Applying it directly to our case, the rule dictates:

€ 

p(c t) =
p(t c) × p(c)

p(t)
 (1).
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This can be read as: the probability of a rhythm being perceived, given a (presented)

performance, is equal to the probability of that performance being produced, given that

rhythm (as instruction), times the prior probability of that rhythm, divided by the probability

of the performance arising in any case.2 The latter term sums over all possible cases (any5

rhythm). It acts as normalization constant and can be rewritten as

€ 

p(t) = p(t c i) × p(c i)
i
∑  (2).

To return to Figure 2 for an illustration of this calculation, each production density

curve 

€ 

p(t c i)  from the top panel is scaled by a prior probability 

€ 

p(c i). This yields the middle10

panel of Figure 2. Then the curves are re-normalized, making them sum to one for each value

of 

€ 

t  by dividing by their sum. This maps these likelihoods to the proportions of (forced)

responses in the bottom panel, which is taken to predict the perceptual data.

Surprisingly simple, Bayes rule may thus be able to give an explanation for the

differences occurring in the means and variances reported for perception and production, as it15

explains the transformation of the shape of these curves. Looking at Figure 2 it comes as no

surprise anymore that for each curve (i.e. each rhythm), the performance mean and variance in

the two datasets differ, as for perception a strong competing neighbor on one side may skew

the response curve.

                                                  
2 In this formulation, considering the environment, to-be-perceived and produced performances have been

equated. Considering the mental representation of rhythmic structures, task instruction (production) and as task

responses (perception) are equated as well.
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Before we embark on testing if the formalism can be made to work on real datasets

there is one caveat. This method can only be used for performance ratios where production

data exist (

€ 

p(t) > 0 ), no prediction can be made for the perception of a performance for which

the probability that it is produced is zero for all instructed rhythms. This usually means that

quite a few rhythms need to be considered in the production experiment. Furthermore this set5

should contain all rhythms obtained as responses in the perception task. Or vice-versa, the

possible responses in the perceptual task should be limited to the set of rhythms tested in

production. Adding the need for an equal tempo in both tasks, these limitations made it quite

hard to find the appropriate datasets for this meta-study.

10

Hypotheses

Bayesian inference can give a new way to interpret data, stating that perception and

production are only apparently different, as the difference is the result of the sensitivity of the

rhythmic categories to (non-uniform) competition in perception. Stated in other terms, we

hypothesized that perception data predicted from production data using Bayes rule is closer to15

observed perception data than the production data itself.

We will first elaborate our hypotheses in these terms before introducing a more

rigorous test. Because of the different nature of perception and production data, the statistical

test of difference can only be carried out using a rough indication of similarity such as

correlation. This goodness of fit measure can indicate how close production data and20

prediction perception data using various priors are. We use a general two-dimensional

(rhythm * performance) correlation measure, which is computed from corresponding two

variables over all categories and all time points. It gives us the amount of variance in the

perception data explained by the production data as well as predicted perception data.
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The direct comparison gives us the amount of variance in the perception data directly

explained by the production data (

€ 

rd
2). Since there are different sets of priors, the prediction

using Bayes rule comes in several variants. A first variant poses uniform priors in which all

ratios are treated equal. The fit between the perception and this uniform prediction (

€ 

ru
2) can be

interpreted as an indication of the success of taking only competition into account. The second5

option is a non-probabilistic interpretation using a complexity measure, the Farey tree, giving

us 

€ 

rf
2 . In the next variant the priors are derived independently from frequency counts in three

different corpora of musical scores yielding 

€ 

rsA
2 , 

€ 

rsE
2 , and 

€ 

rsT
2  (Anthem, Essen and Theme,

respectively). Firstly, we expect 

€ 

rd
2  to be poor when it is compared with other Bayes

predictions. Secondly, since a uniform prior does not differentiate between rhythmic10

categories, we assume uniform priors cannot be as good as score priors and Farey priors:

€ 

ru
2 < rs

2  and 

€ 

ru
2 < rf

2 . The relation between estimated perception data by score count priors

(

€ 

rs
2) and Farey priors (

€ 

rf
2) is unsure, as the reliability of the estimation of exposure from a

corpus of musical scores is not known and neither is the perceptual plausibility of the simple

numerical complexity rule. For the final variant the priors are treated as parameters whose15

value is found by optimizing the fit between predictions and observations, yielding 

€ 

ro
2 . This

option introduces many parameters, one less then the size of the set of rhythms, and it is

obvious that this will result in the best fit: 

€ 

rs
2 < ro

2and 

€ 

rf
2 < ro

2 .

For a rigorous test of the significance of the difference between predicted and

observed perception data, we applied the Kolmogorov-Smirnov goodness of fit test for each20

performance ratio 

€ 

t . The test examines whether the proportion of probability curves 

€ 

t  (4/19

sec, 5/19 sec, etc.) between predicted perception data and observed perception data is
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significantly different3. Our hypothesis is that better predictions yield fewer points 

€ 

n  at which

the predicted probability of responses is still distinguishable from the observed proportion.

The raw production data cannot be related to perception using this test. Thus for a given

significance level we predict 

€ 

ns > no  and 

€ 

n f > no .

The

€ 

ro  and 

€ 

no  will be used as estimate of a ceiling of the success of the method: the5

maximally achievable congruence between a perception and production dataset using only a

Bayes rule.

Application of the method

10

Material

To be able to yield a relevant comparison across situations with a different

experimental method, a careful selection of the data sets was needed. The data set used were

collected from the study by Repp et al. (2002, production), Sadakata, Ohgushi & Desain

(2004, production), Desain & Honing (2003, perception) and Sternberg et al. (1982,15

perception and production), respectively. Detailed data description can be found in Appendix

1.

                                                  
3 The more common chi-square test cannot be used in this study because there were

always categories for which the probability is zero. The underlying variable for Kolmogorov-

Smirnov test is basically required to be continuous, but it is known that the violation of this

assumption leads only to very slight errors on the conservative side (Hayes & Winkler, 1970).
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All of the data sets used rhythmic patterns consisting of two intervals whose total

duration was one second. In the perceptual studies, the subject is presented with a, possibly

repeated, auditory pattern and the task is to identify a rhythm. In the production studies

subjects were asked to perform a rhythm as a movement pattern by hitting a drum or by

playing a piano. See Table 1 for a list of the rhythmic ratios available in the studies. In this5

table the means and standard deviations are also listed as calculated from the raw data (i.e.

actual responses), or as taken from the original article (in case of the Sternberg et al., 1982,

data set4). Though many studies show that the actual time durations (tempo) influence musical

performance, the issue of time scale cannot be taken into consideration in our study

systematically, as it proved impossible to obtain access to data sets that have more than one10

tempo condition in common. Thus, while the individual studies may address other tempi, we

restricted our analyses to one (moderate) tempo: patterns of two time intervals summing to

one second. In a few cases the data were not available at the exact tempo, and a small

interpolation was needed.

As these data stem from quite different experimental setups and also the procedures15

and the musical character or naturalness of the tasks was quite diverse, we will first outline

the tasks that the subjects had to perform.

<Figure 3>

20

 In Repp et al., the pianists were involved in a natural musical undertaking: performing

monophonic melodies on a piano at a given tempo. The Sadakata et al. experiment was

                                                  
4 Sternberg translates the between measurements into category means and standard deviations using moments

(See Appendix C in the original article).
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somewhat artificial, performing a repeated drum pattern on a pad in a mechanical way. For

the perception experiments the free transcription task of Desain & Honing was quite close to

everyday musical activities of musicians and composers. Quite skillful musicians participated

in both the perception and production tasks of Sternberg et al. They identified the rhythmic

category of the presented rhythmic pattern by specifying time duration in the perception task,5

and tapped the rhythmic category along the metronome click in the production task.

A priori likelihoods: empirical

In order to differentiate between rhythmic patterns, frequency counts were derived

from databases of musical scores to serve as sets of priors. A very large corpus from a diverse10

kind of music is necessary to get appropriate counts for the wide range of frequencies of the

rhythmic patterns that occur in music. For this the frequencies of 14 ratios, which occur

within metrical subdivisions, were counted from three different kinds of music corpora named

Anthem, Essen and Theme (detailed description of each database can be found in Appendix

2.). Some ratios, such as 2/5 and 1/7 did not occur at all, reflecting the fact that divisions in 515

and 7 are much less common in Western music (London, 2001).

POCO (Honing, 1990) was used to collect the counts. As the empirical data deals with

rhythmic subdivisions of a repeated unit of one second, which when presented or performed

assume a metrical character, only note pairs that together spanned a metric unit (bar, beat or

sub-beat) were taken into consideration for the counts.20

 The frequency of occurrence of the ratios used in this study as they appeared in the

databases is shown in Table 2. The total number of counted ratios was about 19,000 for the

Theme data, 95,000 for Essen, and 4,000 for the Anthems. The range of the counts spans a

large range: five orders of magnitude. The frequency of ratios not included in this study
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(shown as “other” in the table) is very small; .4% for Theme, .002% for Essen, and 0.005%

for Anthem.

This shows that almost all of the relations of two intervals can be classified into the 15

categories that were used. Table 2 brings out the amount of similarity between the very

different corpora. The correlation between counts of two of the databases is always above .785

with a maximum .99.

<Table 2>

Complexity measure as prior10

Though devoid of a probabilistic interpretation, any measure that assigns different

weights to rhythms can be used as if it were a prior, as long as the measures are positive and

sum to one. In this way we evaluate the Farey tree, a specific simple ranking of ratios

according to their numeric complexity. As the tree (Figure 1) only specifies a ranking, and not

a numerical value, we assigned the root (1/2) the maximum weight and assumed the weight at15

each level to be a fraction of the weights of the next higher level. We required the weights of

the levels used to sum to one5. This uniquely determines the weights.

Method

The steps taken in the computations were quite elaborate, partly because the data was20

not collected in the original studies with the aim to compare them.

                                                  
5 The ratios 0/1 and 1/1 were not taken into account, as they don’t specify a two-interval pattern.
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<Figure 4>

Individual observations of time intervals are available for each subject and each ratio

was averaged over repeated trials for Repp et al. and Sadakata et al. A schematic of the

procedure is presented in Figure 4. The main flow of the information is from left to right. The5

production observations were modeled by a Beta distribution, which can describe these

observations quite well, as they are range-limited and usually skewed (See Appendix 3 for

more information about the beta fit). The fit was done using log-likelihood optimization. The

discrete set of probabilities was calculated from the Beta distributions using bins around the

time grid of the perceptual data as the input for the Bayes calculation. The other input is a set10

of priors, for which some variants are available (uniform, three score counts, Farey tree).

Bayes rule outputs predicted perceptual judgment distributions, which can be compared with

the observed perception data (see the bottom row of Figure 5). The comparison is done by

calculating the correlation between distributions, as well as Kolmogorov-Smirnov goodness

of fit test. The resulting fit provides the evidence on which conclusions about the hypotheses15

can be made. Furthermore, the mean square error between distributions provides the measure

to minimize searching priors that optimally predict the perception data from the production

data. This optimization was constrained by requiring the priors to sum to one.

The processing for the Sternberg et al. data set shares most of the information flow in

figure 4. However, different from Repp et al. and Sadakata et al., only the summary statistics,20

such as means and standard deviations, are available in this case. Thus the production

distributions had to be reconstructed using a symmetric Beta distribution, approximating the

given mean and standard deviation. Using the various sets of priors we predict the perceptual

data. However, the distribution of the target, that is the observed perception data, cannot be

reconstructed from the data in the paper, as the relative proportions of responses for each ratio25
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category are not available. Thus we have to resort to deriving the predicted means and

standard deviations, and comparing them with the observed ones. Minimizing the difference

(rms error) between predicted and observed means leads to a set of optimal priors. The results

presented by Sternberg et al., using a direct comparison of perception and production

statistics, and bypassing Bayes rule, are considered as the baseline.5

In the case of the Desain & Honing perception study, a few outliers, i.e. single

responses isolated from the other responses for the same rhythmic category, were observed in

the categories 1/6, 1/4, 1/3 and 5/6 (2%). They were treated as errors and excluded from the

data. Furthermore, as rhythms used among studies don't completely agree (see Table 1), we

selected the rhythms used in each production study for corresponded perception data to be10

compared. As a result, a small amount of the Desain & Honing perception data had to be

discarded and normalized in the comparison with Sadakata et al. study (3%) and Repp et al.

study (6%) respectively, which result in the different shape of the Desain & Honing

perception distributions in Figure5. Thus the perception data were normalized differently in

each case according to the categories used.15

From the Repp et al. production study we could directly use the rhythmic patterns 1/2,

1/4, and 3/4 of the tempo condition normal (total duration is 1000 ms). However (linear)

interpolation between the “Slow” and “Moderate” condition had to be used for 2/5 and 3/5

patterns, and extrapolation from the “Moderate” and “Slow” condition for 1/3 and 2/320

patterns. From the Sadakata et al. study all intervals were available at the required tempo.

Nevertheless, for both studies the performance tempo was not enforced and drifted slightly

over repeated productions of the time intervals. As these drifts were very small at this

moderate tempo, in the order of 3%, we normalized the time-intervals as to make them sum to

exactly one second. The preprocessed data were entered into the next stage.25
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Results

[Repp] and [Sadakata] vs. [Desain & Honing]

Figure 5 shows how the distribution predicted from two production data sets

approximates perception data after applying Bayes rule. The results using production data5

from Repp et al. [Repp] is shown in the left column and the result for Sadakata et al.

[Sadakata] in the right column. In both cases the original production data are shown in the top

rows and the perception data of Desain & Honing are shown in the bottom rows. The second

row shows predicted perception data obtained by applying a uniform prior, third to the sixth

rows the results from various score priors and the Farey prior are presented. The vertical axis10

shows probability density at the top row and probability for predicted perception and real

perception data. The horizontal axis shows the hierarchical ratio on a grid of 1/19th, in

accordance with the stimulus sampling used in the perception study. Note a limited range is

presented on the x-axis, as perceptual data is only available in that interval. The result of the

Kolmogorov-Smirnov goodness of fit test is shown as a bar under each prediction. If the15

prediction on a certain performance ratio is significantly different from perception data the bar

under this time point is gray (p < .1, < .05) or black (p < .01). Non-significant difference,

which indicates good predictions, is represented as white.

<Figure 5>20

First notice the difference between top and bottom rows: the contrasting nature of the

tasks in rhythm production (top) and perception (bottom) is reflected in the very different

curves. It can be easily understood that conflicting means and variances are reported, given
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that the distributions themselves are so different. This dissimilarity is also shown in the low

amount of variance explained by production data (

€ 

rd
2), as given in Table 3 under ‘direct

comparison’. Now consider the second row. The predicted perceptual data using Bayes rule

with uniform priors, assuming all categories equally likely, are shown here. Accounting for

the different nature of the tasks with regard to competition produces a considerable change of5

the shape of the distributions. The success of using uniform priors was different between the

data sets; the uniform priors explained the relation in the case of [Sadakata] already quite

well, while a considerable difference was still observed for [Repp]. The predicted perception

data with Farey priors and with score count priors are shown in the next four rows of Figure 5.

In most of these cases these priors provide fine predictions (see Table 3). The limits of the10

method are shown in the last row of Figure 5. Here the priors were considered as parameters

and optimized for best fit. This significantly raised the proportion of variance explained for

[Repp] and [Sadakata].

<Table 3>15

Although the Farey tree seems counterintuitive in some respects (e.g., 1/4 is intuitively

less complex than 2/5), priors from score counts and Farey tree seem to reflect the relative

importance of rhythmic categories to a certain extent, as they succeed in providing good 

€ 

r2s

in both production data sets. However, it is shown that the fit can still be much improved at20

least in the [Repp] set, by optimizing the priors.

As shown in Figure 5, Kolmogorov-Smirnov goodness of fit tests showed that the

number of points at which there is a significant difference between predicted and observed

perception is considerably decreased using the optimal priors in both data sets. Thus, the order
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regarding the appropriateness of the priors was as expected in [Repp], 

€ 

rd
2 < ru

2 < (rs
2,rf

2) < ro
2

and 

€ 

nu > (ns ,n f ) > no . However, in [Sadakata], the order was different because uniform priors

worked well, 

€ 

rd
2 < (ru

2,rs
2,rf

2) < ro
2  and 

€ 

(ns ,n f ) > nu > no .

[Sternberg] vs. [Sternberg]5

Though for a thorough application of Bayes method the row data needs to be

available, using approximations we can still test if Bayes method works when only statistics

(means, standard deviations) are known, such as the study of Sternberg et al.

As explained in the method section, the data distribution of the production experiment

(P4) for each ratio was approximated by symmetrical beta distributions. Means and standard10

deviations of the predicted perception data were calculated, using uniform priors, Farey tree

priors, score count priors (Theme, Essen and Anthem, respectively) and optimal priors. We

compared these statistics with the judgment perception experiment (J2). Figure 6 shows the

means in the same format as Figure 5 of the Sternberg et al. article. Note that Figure 6 was

made based on the average response of three participants from the original article while the15

response by only one participant was plotted in Figure 5 in the original article. Observed and

predicted mean values are plotted against the rhythmic ratio on a log scale. Exact timing

provides the reference in this figure as the diagonal dotted line. As reported by Sternberg et

al., there is a remarkable discrepancy between the results P4 and J2 (see data marked with * in

Figure 6), constituting a contraction of the first interval for the perceptual task and an20

elongation of the first intervals for the production task. This discrepancy becomes especially

large for a ratio smaller than 1/4.

<Figure 6>
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In Figure 6 we can see how the Bayesian approach derives predicted perception means

from the production data, using different priors. Using the rms error (

€ 

e) between predicted

means and observed means (Sternberg, J2) as criterion, similar results as in the result of

[Repp] and [Sadakata] was found, 

€ 

eo> (

€ 

es, 

€ 

e f )> 

€ 

eu > 

€ 

ed . The 

€ 

e  were smallest when priors5

were optimized (

€ 

eo=.07), followed by Essen (

€ 

esE =.10), Farey (

€ 

e f =.11), Theme (

€ 

esT =.13) and

Anthem (

€ 

esA =.16), then Uniform (

€ 

eu=.17) and Direct comparison (

€ 

ed=.18). An excellent

prediction was made by optimal priors, which makes the distinction between perception and

production means almost disappear.

However, one has to notice that there are only a few rhythmic ratios contained in the10

Sternberg study, e.g. there is no 1/3 in between 1/4 and 1/2 and there is an absence of ratios

smaller than 1/8. Note also that results of the score count priors are omitted in figure 6, as not

all the predictions could be made due to the lack of these ratios in the score databases.

Priors15

Comparing the various priors, reflecting the non homogeneity of the space of rhythmic

structures, is one of our interests in this study. To be able to run a good optimization and

derive a set of optimal priors a good coverage of rhythmic categories is needed. As implied by

score counts, rhythmic categories included in the study by Repp et al. and Sadakata et al. in

combination cover most of the musically reasonable ratios that can occur within 1000 ms20

(98.8 % of Theme, 100% of Essen and 98.5% of Anthem). Thus it is interesting to look at the

priors obtained by the combination of production data by [Repp] and [Sadakata] because they

jointly covers these musically reasonable ratios. The data sets of these two studies were

combined in order to arrive at a complete set of optimal priors [Repp-Sadakata].
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<Figure 7>

In Figure 7, the theoretical Farey complexity of ratios, the proportion of occurrence as

measured in the score counts, and the optimal priors obtained from [Repp-Sadakata] are5

shown. They are presented on a logarithmic scale, to allow for the wide range. In the case of a

zero prior the corresponding value in the logarithmic graph was set to be the lowest rank. At

first view their proportions appear to be quite different. As the distributions do not extend

very widely, the size of a prior determines the shape of the curves only relative to its direct

neighbors. Thus the optimality of the priors may reflect only the local relation and the global10

structure of the set may not be well expressed, i.e. the relative proportion of the left and the

rightmost prior may be subject to a much larger estimation error than the relative proportion

of two neighboring ones.

Nevertheless, all priors seem to have in common a zigzag pattern. All kinds of priors

agree in assigning a smaller value at the patterns having five as their denominators, at least15

they are smaller than the categories right next to them. The Farey-tree is number-theoretic and

not perceptually inspired, as is for example reflected in the fact that it poses the 1/5 ratio as

less complex than 1/6. The last ratio is usually considered to be perceptually simpler because

it decomposes into a hierarchical duple plus triple subdivision. However, the score counts and

the Farey tree, when used as priors, are found to give good predictions, and share some20

characteristics with optimal priors. It is interesting to notice that the characteristics that exist

in the priors derived from an empirical source (score count and optimal prior) and from a

theoretical one (Farey tree) are quite well known from other empirical studies. Quintuplets

e.g., rhythmic categories with ratios whose denominator is five, are often mentioned as
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somewhat unstable patterns to produce or perceive. This has been associated with the nature

of the mental coding of these temporal patterns (Povel, 1981; Povel & Essens, 1985).

The other artificial nature of the Farey tree is its perfect symmetry. However, the

assumption that rhythmic patterns retain their characteristics when reversed in time is not very

realistic. In contrast, Figure 7 shows that the structure of the optimal priors and score priors5

are asymmetrical, as optimal priors tend to yield lower priors for long-short patterns than for

short-long ones. The score counts also showed asymmetrical characteristics but in the

opposite direction, as long-short patterns tend to occur more in musical scores than their

short-long reflections. The asymmetry in processing of temporal patterns is also often found

in empirical studies. For production e.g., Repp et al. (2002) found that 1/3 seems to be more10

difficult to perform than 2/3, as the number of trials that participants needed until they

achieved a good performance according to their own standards are larger in 1/3 than that of

2/3. To find asymmetry is also common in rhythm perception studies. For example, Desain &

Honing (2003) also showed asymmetry in the size of permutated rhythmic categories for three

interval temporal patterns. Asymmetry in time seems to suggest that theories about auditory15

perception may need to be radically different from visual perception theories in which the

symmetry in space plays a strong role. However, the different gradient between the optimal

priors and the empirical score counts found in this study is a puzzling phenomenon that we do

not know how to interpret yet.

20

Discussion
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Having found that rhythm perception data can be predicted accurately from rhythm

production data using Bayes rule, we have arrived at the conclusion that the characteristics of

rhythm perception and production processes can be successfully related.6

 The weakness of the many curve-fitting studies with free parameters, that they do not

reveal anything about the flexibility of the theory or the likelihood of other outcomes, has5

been pointed out by Roberts & Pashler (2000). Regarding this point, one may argue that it is

no surprise that optimized priors yield a good prediction because of the large number of

parameters. Indeed in general (as discussed in e.g. Desain, Honing, van Thienen, & Windsor,

1998), even a theory that produces a perfect fit to the empirical data is no evidence in itself:

there could be alternative explanations that are equally likely.10

Nevertheless, the optimized priors tell us what the best obtainable fit is, given any

corpus. This gives a baseline and allows a comparison with competing theories, might they

arise. The real test of the method is without any free parameters, using the priors from several

candidate theories, such as Farey tree and score counts. The fact that good results were

obtained with these priors and that the optimal priors themselves are not very dissimilar to15

them is encouraging for the validity of this approach. Furthermore, their characteristics are in

agreement to that which is found in other empirical studies.

What does this success of the method mean in terms of mental processing? Should

Bayes rule be considered as just a methodological adjustment that makes it possible to20

compensate for the effect of (non-uniform) competition taking place in perception? By

defining the strategy that a perceiver can use when deciding which category a performance

                                                  
6 It is more difficult to apply the procedure backwards. Given perception data and priors, production data is hard

to constrain and predict, especially around the extremes.
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belongs to, we can reach an answer to that question. The optimal perceptual strategy, the one

with the highest expected proportion of correct answers, maximizes the posterior likelihood

(in the Bayesian sense), and chooses the rhythm with the highest probability, given the

performance. The fact that human subjects turn out to behave close to this strategy means that

human rhythm perception is optimal, in the sense that it is adapted to, and optimized for,5

recognition in an environment in which rhythm production takes place, a result that may seem

as trivial as it is deep. Hopefully progress in perception-action theories may in time reveal the

relevance of this optimality concept. Note that in our approach the production distribution

need to be fully known to the perceiver. This may seem unrealistic but advances in machine

leaning may guide us to a formal understanding of how this knowledge can be learned10

adaptively.

Implementation of Bayesian concepts for known results in perception and production

of rhythm can place them in a new light and has consequences for theories about music

cognition. As an example, from the results of Sternberg et al. (1982) the conclusion could be15

drawn naively that even extraordinary well-skilled musicians are not able to reliably and

accurately produce and recognize time interval ratios in isolation, especially when they are

more complex than 1/2. Furthermore, this work reported that rhythm perception and

production are different for more complex ratios, and that performed ratios are far from their

exact prototypes. The two processes were understood as not completely similar, they share20

only part of their mechanisms. But in the light of our Bayesian approach, one is drawn to the

quite different conclusion that rhythm perception and production are closely associated;

participants behave very close to optimal in recognizing temporal patterns, even though the

prototypes are far from exact. Furthermore, Bayes rule allows us to make a try at
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understanding the relation between the temporal processing of different patterns using the

concept of priors.

Further questions still remain to be answered, such as what the optimal priors suggest,

and how prior knowledge is acquired. Training subjects on unfamiliar patterns, or comparing5

rhythm perception, production, and score count data from different musical cultures may be

the way to proceed in the quest to understand the nature of these priors better. Again in these

cases we expect an optimal attunement of human perception to a world in which human

production takes place, even if the world is changing. Here individual differences may be

modeled as different set of priors. A more local adaptation may be required when rhythms are10

presented in a context of e.g. a meter or time signature. As it is known that the “perceptive

field”, the area of sensitivity of a rhythmic category, is changed by metric priming (Desain &

Honing, 2003), and certain rhythms are more likely to occur in scores with a certain meter

(Palmer & Krumhansl, 1990), it might be possible to predict contextual effects by changing

the priors, as proposed by Friston (2002). This indicates that our method can eventually have15

consequences for the difficult cognitive modeling of psychological concepts such as priming

and attention.

Finally, one important issue that was not discussed yet is how this approach can be

extended to handle more complex rhythms. Surely listeners do not memorize a huge number

of distributions for different complex rhythms. Somehow, perception of complex rhythm must20

be based on simple rhythms in a principled way. Both Longuet-Higgins (1987) and Cemgil,

Desain & Kappen (2000) proposed such a recursive metric subdivision, however, they assume

categories around centered mechanical timing. As we have shown here, even when one

assumes mechanical performances the perceptual categories may not align with them. A good
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model how the perception of more complex rhythms can be derived from distributions of

simple perceptual subdivisions is an open and difficult question.

Summary and conclusion

In this study, we presented evidence that Bayes rule can explain the relation between5

rhythm perception and production data by assuming that they are identical in a fundamental

way. The validity of this approach was demonstrated, and consistent results were obtained

under very different experimental conditions and computational setups. First, using raw data

sets, we simulated the way in which Bayes rule relates the given probability distribution of the

production of rhythmic patterns to the probabilities of the perception of rhythmic patterns.10

Even with limited information of the data set, when only the means and standard deviations

are known, it was possible to provide a relevant prediction as was shown subsequently.
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Appendix

1. Data description

Desain & Honing (Perception)

In Desain & Honing (2003), a categorization experiment is described in which

subjects respond with a rhythmic category that reflect a three-interval performance pattern5

best, using a computer interface for common music notation. More details, full results and a

model can be found in Desain & Sadakata (submitted). In this experiment 17 skilled

musicians participated. Each stimulus pattern was made up of two time intervals on a time

grid of 1/19th of 1000 ms, the minimum duration of an interval being three time grid units and

the maximum 16 units. This yielded a set of 14 stimulus patterns. The pattern was repeated10

three times, embedded in a beat, as illustrated in Figure 3. The participants were asked to use

notations commonly encountered in their practice. Although the set of possible response

categories, using the computer notation interface, was still extremely large: thousands of

ratios can be constructed using a range from whole note to 32nd note durations, using dotting,

ties, triplets, etc, the actual responses used only 18 rhythms of the set.15

Repp et al. (Production)

In Repp et al. (2002) the task was to perform simple monophonic melodies with the

following rhythmic patterns: 1/2, 2/5, 1/3, 1/4, 3/5, 2/3 and 3/4. 12 pianists participated; they20

performed from a musical score. A maximum of three attempts was permitted without

rehearsal and the version that satisfied the performer was used. The rhythmic patterns were

repeated over six bars and performed in four different tempi; a metronome was used before
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each performance. Averages over repetitions of inter-onset times were used. The responses are

shown at the top of left column in Figure 5 as a probability density.

Sadakata et al. (Production)

The task in Sadakata, Ohgushi & Desain (2004) was to perform nine kinds of rhythmic5

patterns: 1/2, 1/3, 1/4, 1/5, 1/6, 2/3, 3/4, 4/5 and 5/6, in three tempo conditions and two

playing modes, mechanical and musical. The former was used in this study. Each pattern was

performed from a score and repeated 10 times (See Figure 3.). 12 percussionists participated

in the experiments. Averages over repetitions of inter-onset times, excluding first and last bar

were used.10

Sternberg et al. Experiment J2. (Perception)

In Sternberg et al. (1982) a number of perceptual experiments are presented. Three

extremely skilled musicians participated. In experiment J2 the subjects heard on each trial five

beat clicks spaced 1000 ms apart, with marker clicks following the third and fourth as shown15

in Figure 3. They were asked to judge the intervals from the beats to the markers. This beat-

marker interval was varied over a range from a minimum of 43 ms to a maximum 891 ms.

They were presented as four different sets of 24 intervals whose spacing varied in the manner

of a harmonic series. The participants selected a response from a set of eight categories, which

are “less than 1/8 of a beat”, “between 1/8 and 1/7”, ..., “between 1/3 and 1/2” and “greater20

than 1/2”. The eight ordered categories define seven between-category boundaries on a

hypothetical response continuum (see footnote 4). The estimated means of the psychometric

function for each category and its variability were calculated. As the raw data of this study are
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no longer available the means and variances were taken from Table 1 and Figure 5 of the

original article.

Sternberg et al. Experiment P4. (Production)

On each trial in this experiment by Sternberg et al. (1982), 12 beat clicks were5

presented. The same musicians served as participants as in perceptual task (J2). Participants

made 10 consecutive finger-tap productions so as to produce the ratio that had been specified

by instruction. The first response was produced after the third beat click, as illustrated in

Figure 3. The ratio names used in the experiment were 1/8, 1/7, 1/6, 1/4, 1/2, 3/4, 5/6, and 7/8.

Using the average value and standard deviations of these responses, the probability of10

occurrence of each category on a response continuum was calculated using a normal

distribution. Averages were taken from Table 1 and variances were taken from Figure 5 of the

original article.

2.Data description of an databases of musical scores15

Barlow & Morgenstern, Dictionary of Musical Themes [Theme]

The Dictionary of Musical Themes (Barlow & Morgenstern, 1948; 1983) is a well-

known theme index containing approximately 10,000 themes from the classical music

repertoire. Both melody and rhythm are coded for each theme, as well as its time signature.

The collection consists of about 45% duple, 31 % triple, and 24% compound meters.20
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Schaffrath, Essen Folksong Collection [Essen]

The Essen Folksong Collection (Schaffrath, 1993; 1995) contains a large sample of

European folksongs, collected and encoded in the format of Essen Associative Code.

Presently, 6,251 folksongs are available, although the total number of folksongs in the

collection has reached 20,000. The metrical structure of the music (as signified by the time5

signature) is quite varied: 54% being duple, 29% triple, and 17% compound meters. The

database has been widely used to test a variety of musicological theories (e.g. Huron, 1999).

Though mostly being traditional German folksongs, they have simple rhythmic and metric

structure and whilst regionally restricted, some songs are widely known in Europe (Huron,

2002). Thus it could be considered a reasonable sample of childhood exposure to music.10

Shaw & Coleman, National Anthems Collection [Anthem]

The National Anthems Collection (based on Shaw & Coleman, 1960) is a corpus of

the National Anthems of the World constructed for the evaluation of beat and meter induction

models (Desain & Honing, 1999). The database contains only temporal information (rhythm15

and meter, no melodic or other information). The set (N=105) consists of around 90% duple

(70% is in 4/4) and 10 % triple meters.

3. Beta fit

A Beta distribution was chosen for the data approximation because of its flexibility, as20

it can fit skewed distributions. Furthermore, it has no tails extending to infinity. This is an

advantage in the next step as very small differences in a set of small long tails (as e.g., a

normal distribution would exhibit) may end up in very large differences after application of

Bayes rule far from the category center. This may generate non-contiguous categories. The
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Beta distribution has two free parameters, 

€ 

α  and 

€ 

β , that characterize the form of curve and

two extra parameters (w and m) to rescale (squeeze) and shift the distribution to any mean and

width using a linear transformation. In our study, the parameters

€ 

α , 

€ 

β , w, and m were

estimated from the production data set for every rhythmic pattern, using the maximum

likelihood method. An example of the fitted Beta distribution (and a normal fit to the same5

observations) is shown in Figure 8. The vertical axis shows probability density and the

horizontal axis shows the duration of the first interval.

<Figure 8>

10

The production data for each ratio was thus characterized by the four parameters of the shifted

Beta distribution, yielding a family of curves as illustrated in Figure 9, which also shows

histograms of the raw data.

<Figure 9>15
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Footnotes

1 More formally correct would be to present the conditional probabilities as

€ 

p(T |C = c j ) , thus a Bayes rule as 

€ 

P(C = cj |T) = p(t |C = cj) × p(C = cj) / p(t) . However we

opt for the shorter notation.

5

2 In this formulation, considering the environment, to-be-perceived and produced

performances have been equated. Considering the mental representation of rhythmic

structures, task instruction (production) and as task responses (perception) are equated as

well.

10

3 The more common chi-square test cannot be used in this study because there were

always categories for which the probability is zero. The underlying variable for Kolmogorov-

Smirnov test is basically required to be continuous, but it is known that the violation of this

assumption leads only to very slight errors on the conservative side (Hayes & Winkler, 1970).

15

4 Sternberg translates the ‘between’ measurements into category means and standard

deviations that we use using moment (See Appendix C in the original article).

5 The ratios 0/1 and 1/1 were not taken into account, as they don’t specify a two-

interval pattern.20

6 It is more difficult to apply the procedure backwards. Given perception data and

priors, production data is hard to constrain and predict, especially around the extremes.
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   Hierarchical and successive interval ratios, and first interval (ms)

1/8 1/7 1/6 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/6 7/8

1:7 1:6 1:5 1:4 1:3 1:2 2:3 1:1 3:2 2:1 3:1 4:1 5:1 7:1

Mode and Data set N R 125 143 167 200 250 333 400 500 600 667 750 800 833 875

Perception

17 1 166.9 - 169.8 197.7 270 338.6 421 488.5 579 636.6 731.2 - 812.5 818.9[Desain &

Honing]
(19.6) - (21.9) (22.8) (67.4) (60.8)

-

(44.1)

-

(47.1) (47.4) - (26.2) (32.1)

3 3-5 59.3 79.7 105.4 154.4 207.3 303.6 - 451.7 - - - - - -
[Sternberg (J2)]

(8.3) (10.4) (20.4) (30.9) (50.1) (50.8) - (60.7) - - - - - -

Production

12 6 - - - - 278.6 315.6** 364.1* 499.6 580.6* 631.0** 709 - - -
[Repp]

- - - - (27.8) (33.6) (33.9) (17.6) (43.5) (37.2) (34.3) - - -

12 8 - - 174.3 230.6 267.1 332.5 - 500.9 - 646 721.8 753.2 809.1 -
[Sadakata]

- - (23.1) (26.8) (16.0) (12.5) - (8.3) - (12.9) (14.9) (21.2) (20.8) -

3
250-

1000 156.8 181.4 190.4 - 256.7 - - 500.1 - - 743.9 - 814.2 853.7[Sternberg (P4)]

(30.4) (30.2) (30.0) - (20.3) - - (20.6) - - (30.2) - (30.1) (40.8)

Table 1. Characteristics of the data from the five experiments compared in this study. The

number of subjects (N), the number of repetitions (R), the mean interval duration for the first

interval of each ratio (in ms), and their standard deviations (in parentheses). An asterisk (*)5

indicates an interpolation method was needed, two asterisks (**) indicate the use of an

extrapolation method to arrive at the appropriate tempo.
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Frequency

Ratio name Essen Anthem Theme

1/8 .000 .000 .001

1/7 .000 .000 .000

1/6 .000 .000 .000

1/5 .000 .000 .000

1/4 .001 .001 .012

1/3 .009 .002 .005

2/5 .000 .000 .000

1/2 .720 .473 .704

3/5 .000 .000 .000

2/3 .122 .012 .081

3/4 .140 .496 .175

4/5 .000 .000 .000

5/6 .006 .001 .008

7/8 .000 .015 .011

Other .000 .000 .004

Table 2. The frequency of all the ratios used in this study as they were extracted from corpora

of musical scores: the Essen Folksong Collection [Essen], the Anthem set [Anthem] and

Barlow & Morgenstern’s The Dictionary of Musical Themes [Theme] Note that .000 should5

be read as < .0005.
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Variance explained

Data sets Bayesian model with priors

Score priors 

€ 

rs
2

Production  Perception

Direct

€ 

rd
2

Uniform

€ 

ru
2

Farey

€ 

rf
2

Anthem Essen Theme

Optimal

€ 

ro
2

[Repp] 0.34 0.38 0.71 0.47 0.65 0.73 0.93

[Sadakata]  

[Desain &

Honing] 0.39 0.66 0.62 0.50 0.68 0.72 0.74

Table 3. Proportion of the variance in the perception data explained by the production data

(and Bayes rule).

5
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Figure 1. The Farey theory of the hierarchical ordering of the ratios according to their

complexity, visualized as a tree structure. The Farey tree provides a structure of rational

numbers, which can be derived algorithmically (Cvitanovi´c, Shraiman & Söderverg, 1985;

González & Piro, 1985). The ratios at each level (m”/n”) in the tree are obtained from two

parent ratios located at a higher level of the tree (m/n and m’/n’), m”/n”=(m+m’)/(n+n’). One5

parent ratio is connected directly to the daughter ratio by a branch (see example arrow). The

other parent ratio is found following the vertical arrow upward till it crosses a branch, and

then following the branch upward.

Figure 2. a: Example distributions of production data: 

€ 

p(t | c) . b: Example distributions of10

production data multiplied by priors: 

€ 

p(c | t) × p(c) . c: Example distributions of perception

data: 

€ 

p(c | t)  (See formula 1).

Figure 3. Example of the stimuli and produced responses in the experiments.

15

Figure 4. The paradigm used to compare perception data with production data using Bayesian

modeling, and the figures and tables in this article. The inputs are the raw production data

(leftmost box), raw perception data (rightmost box) and a set of priors. After fitting a

distribution to the production data and applying Bayes rule, using one of the prior datasets, the

perception data is predicted. The explained variance of the fit, and the statistical significance20

of the remaining difference is one of the results. The other result, a table of optional priors, is

obtained when the fit is optimized using priors as parameters.

Figure 5. The observed and predicted distributions of rhythmic categories. On the horizontal

axis the duration of the first interval is given, on the vertical axis the probability is25
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represented, either of producing this interval given a rhythmic category, or of judging this

interval as a proper representation of the given rhythmic category. In the middle rows the

perception data as predicted by Bayes rule with different priors is presented.

5

Figure 6. Observed mean ratios in Sternberg et al. production (P4) and perception (J2) data,

and the mean ratios of perception as predicted from the production means by Bayes rule using

various priors on a logarithmic scale.

Figure 7. The optimal priors of the rhythmic categories obtained from Repp-Sadakata, the10

priors from candidate theories regarding to simplicity of ratios of temporal patterns

represented on logarithmic scale and the priors as derived from a Farey tree on logarithmic

scale. In the case of a zero prior the corresponding value in the logarithmic graph was set to

be the lowest rank.

15

Figure 8. Example of the relation between observed data and two approximated continuous

distributions. Gray vertical lines show the observations, the gray curve represents the data as

approximated by the normal distribution and the black curve represents the data as

approximated by a Beta distribution.

20

Figure 9. An illustration of the relation between the histogram of the observed production

data (Sadakata et al., gray line) and the approximating Beta distributions (black line), for nine

different rhythmic ratios.
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