Quantifying the musical phenotype: An overview

Dr. Bruno Gingras University of Innsbruck, Austria

Outline

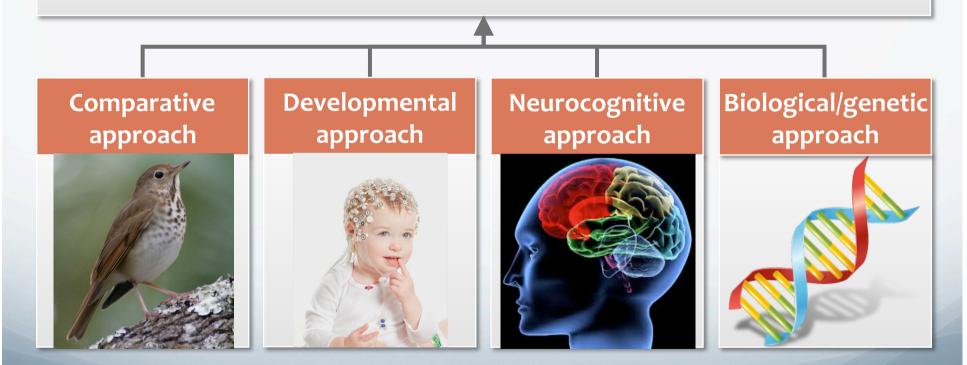
• What is musicality and why do we need to measure it?

• Overview of the main musical aptitude tests

Current perspectives and recent developments

Musicality: some definitions

- Broadly, musicality refers to two concepts:
- 1. General ability of humans to make and appreciate music
- 2. Individual differences with regard to musical abilities


 Distinction between musical aptitude (potential level of musical ability) and musical achievement (actual level of musical ability)

Why do we need to assess musicality?

- Need to develop and validate tools to enable the quantification and analysis of musical aptitude on a large scale
- We cannot rely solely on musical training as a proxy for musical abilities
 - "Musical sleepers": untrained individuals showing high musical talent or aptitude (Law & Zentner, 2012)

How can we investigate the biology of musicality?

Various approaches used to investigate the biology of human musicality

Large-scale genomics and phenomics of musical aptitude

- Technological developments have made possible largescale genome-wide association scans (GWAS) studies on larger population samples
- Wide individual variation in music-related skills throughout the general population (Müllensiefen, Gingras, et al., 2014)
- Aim: obtain genomic data and an assessment of the musicality phenotype that is both reliable and objective, for a large number of people
- Ultimate goal: link specific genomic regions with specific musical phenotypes

Musical aptitude: different components

- Tonal abilities (pitch perception, harmony perception, singing in a key, hearing separate voices in polyphonic music, etc...)
- Rhythmic abilities (following the beat, tapping etc...)
- Kinesthetic, aesthetic and creative abilities (Shuter-Dyson, 1999)
- Concept of audiation: ability to hear music in one's mind (Gordon, 1989)
 - Maybe more important for composers and conductors (Persson, 2009)

Musical aptitude tests

- Musical aptitude tests usually assess:
- 1. Music perception skills
 - Loudness and pitch perception
 - Perception of melodic and/or rhythmic differences
 - In some cases perception of timbre differences, or other parameters
- 2. Music production skills
 - Performance abilities (including tapping and singing)
 - Creative abilities (composing, arranging, or improvising)

Musical aptitude tests: interpreting the scores

- Norms are generally available so that a standardized score can be computed: how far is a person's score from the average population score?
- Statistical criteria to assess the quality of a test:
 - Reliability: consistency of measurement -> internal consistency and test-retest reliability
 - Validity: is the test measuring what it intends to measure? -> convergent and divergent validity
- May include age-specific population norms (same as with intelligence tests)

The ideal tool for measuring musicality

The ideal test battery would have these attributes:

- Captures a broad array of musical skills, involving both perception and production
- Can be given to individuals with no formal musical training
- Has a version for preschool children
- Wide difficulty range (no floor or ceiling effects)
- Weakly correlated with general intelligence or working memory
- As culture-independent as possible
- Includes covariates such as amount of musical training
- Can be given online
- Reasonably short duration

Outline

• What is musicality and why do we need to measure it?

• Overview of the main musical aptitude tests

Current perspectives and recent developments

Some well-known musical aptitude tests

- Seashore (1919): Seashore Measures of Musical Talent
- Wing (1961): Standardized Tests of Musical intelligence
- Bentley (1965): Measures of Musical Abilities
- Gordon (1965): Musical Aptitude Profile
- Gordon (1989): Advanced Measures of Music Audiation
- Wallentin et al. (2010): Musical Ear Test
- Law & Zentner (2012): Profile of Music Perception Skills
- Ullén et al. (2014): Swedish Musical Discrimination Test
- Müllensiefen et al. (2014): Goldsmiths Musical Sophistication Index

Seashore Measures of Musical Talent: the first systematic measure of music ability

- First version published in 1919; revised version in 1939
- Main features of Seashore's approach:
 - Musical ability is based on the capacity for psychoacoustical discrimination
 - Psychoacoustical skills subdivided into categories
 - These skills are assessed by asking participants to listen and decide whether two simple stimuli are same or different

- Stimuli: pairs of tones or brief tone sequences
- Focus on measuring aptitude, not achievement

Other "earlier" tests

- Wing's Standardized Tests of Musical Intelligence: analogous to Seashore's test, but also aimed to measure aesthetic sensitivity to musical form and performance
- Gordon's tests focus on audiation and were designed for educational purposes

- Karma Music Test (Karma, 1973; 2007) focuses on the general ability to process auditory patterns
 - The "ability to conceive the structure of acoustic material" underlies culture-specific expressions of musical ability

"Earlier tests" versus "modern tests": Different times, different aims

- Few new tests published between 1980 and 2000
- Tests published before 1980 (Seashore, Wing, Gordon, etc...) generally used as a tool to identify children talented enough to receive a formal music education
- Tests published after 2000 (Wallentin et al., Law & Zentner, Müllensiefen et al., etc...) generally used to address research questions relating to the determinants of musical ability
 - Primarily used in cognitive sciences
 - Greater focus on stimulus design and control as well as psychometric qualities (reliability and validity)

The Musical Ear Test (MET)

- Inspired by Gordon's tests
- Discrimination tasks (same/different)
- Two listening subtests:
 - Short melodies

Rhythmic patterns

- Test takes ~ 20 min.; no known online implementation
- No ceiling effects, even with professional musicians

Swedish Musical Discrimination Test (SMDT)

- Based on discrimination tasks (same/different)
- Three listening subtests:
 - Short melodies
 - Rhythmic patterns
 - Single tones
- Each subtest takes ~4 min.; can be given online
 - Successfully used on large samples of > 6000 individuals
- Adobe Flash Player implementation can be obtained by contacting the first author

The Goldsmiths Musical Sophistication Index (Gold-MSI)

- Self-report questionnaire
 - Also validated in German (Schaal et al., 2014)
- Two listening subtests:
 - Beat perception: on/off the beat
 - Melodic memory: same/different, based on relative pitch

- Tested on a very large sample (~ 148,000 participants)
- Entire test takes ~ 20 minutes; can be given online

Gold-MSI self-report questionnaire (sample)

Please circle the most appropriate category:	1 Completely Disagree	2 Strongly Disagree	3 Disagree	4 Neither Agree nor Disagree	5 Agree	6 Strongly Agree	7 Completely Agree
1. I spend a lot of my free time doing music-related activities.	1	2	3	4	5	6	7
2. I sometimes choose music that can trig- ger shivers down my spine.	1	2	3	4	5	6	7
3. I enjoy writing about music, for example on blogs and forums.	1	2	3	4	5	6	7
4. If somebody starts singing a song I don't know, I can usually join in.	1	2	3	4	5	6	7
5. I am able to judge whether someone is a good singer or not.	1	2	3	4	5	6	7
6. I usually know when I'm hearing a song for the first time.	1	2	3	4	5	6	7
7. I can sing or play music from memory.	1	2	3	4	5	6	7
8. I'm intrigued by musical styles I'm not familiar with and want to find out more.	1	2	3	4	5	6	7
9. Pieces of music rarely evoke emotions for me.	1	2	3	4	5	6	7
10. I am able to hit the right notes when I sing along with a recording.	1	2	3	4	5	6	7

Gold-MSI:

Subscales of the self-report questionnaire

- Factor analysis yields a "General sophistication" index and five subscales:
 - Active engagement
 - Perceptual abilities
 - Musical training
 - Singing abilities
 - Emotions

Gold-MSI: Linking self-report questionnaire and listening tests

- Correlation of .29 between General Sophistication Index and Beat Perception (.27 for Melodic Memory)
- Correlations between Gordon's Advanced Measures of Audiation and self-report between .30 and .51 (n = 44)
 - Upper range of reported correlations between self-report questionnaires and perceptual/cognitive ability tests

Gold-MSI questionnaire and "Big Five" personality traits

- Openness to experience and Extraversion correlate strongly with general musical sophistication score
- Agreeableness and Emotional Stability also correlated with general musical sophistication, but not as strongly
- High scores on Openness to experience associated with:
 - Cognitive ability (Chamorro-Premuzic et al., 2004)
 - Aesthetic interest (Furnham & Chamorro-Premuzic, 2004)
 - Powerful emotional reactions when listening to music (Vuoskoski & Eerola, 2011)
- Personality predicts musical sophistication scores even after controlling for demographic variables and musicianship, with Openness (specifically Openness to Aesthetics) the best predictor (Greenberg et al., 2015)

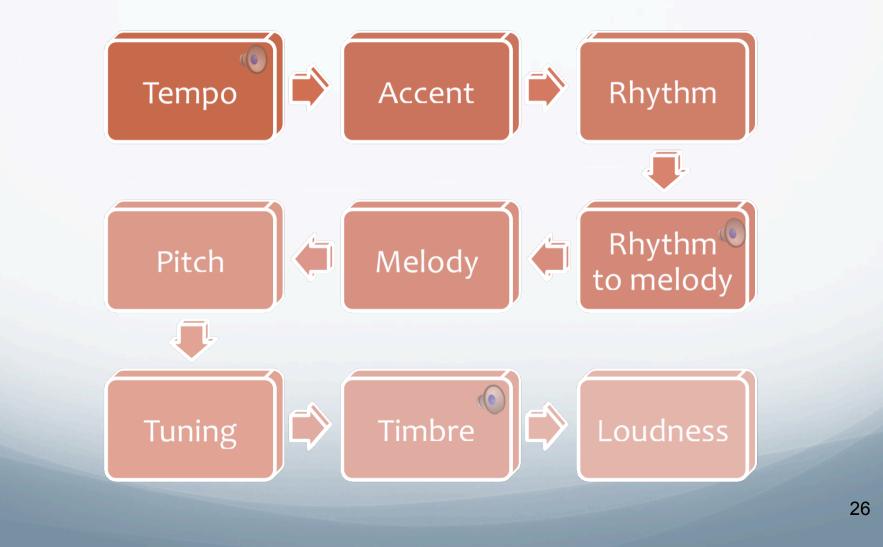
Gold-MSI and socio-demographic variables

- Occupation, occupational status, age, gender, and wealth are the main socio-demographic factors associated with musical sophistication
- Substance use (alcohol, recreational drugs) also predicts musical sophistication

How to get the Gold-MSI

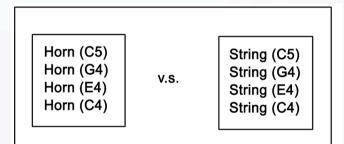
All components of the Gold-MSI:

- Are freely available for research purposes
- Are fully documented
- Have data norms derived from an adult population
- Materials for download (documentation and stimuli):

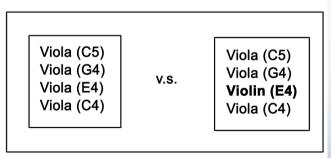

http://www.gold.ac.uk/music-mind-brain/gold-msi/

 Psychopy (Peirce, 2007) implementation of the test available in English and German

The Profile of Music Perception Skills (PROMS)


- Discrimination tasks (same/different)
- 9 subtests (see next slide)
- Test aims to be applicable across cultures:
 - Excerpt from South Indian music (Carnatic):
 - Excerpt based on Western tonality:
 - Actual stimulus from the PROMS:
- Entire test takes ~1 hour; can be given online

The Profile of Music Perception Skills (PROMS)



PROMS: Easy versus difficult tasks

• Example from the timbre subtest:

Example of Easy-Different Trial

Example of Complex-Different Trial

PROMS: Correlations between musical abilities and other psychological traits

PROMS	
(TOTAL SCORE)	

Abilities

Verbal abilities	.35*
Working memory	.30*
IQ	.20
Psychological traits	
Absorption (according to Tellegen)	.40*
Empathy	.30*
Extraversion	.25*

Values based on work currently in progress (Zentner et al.)

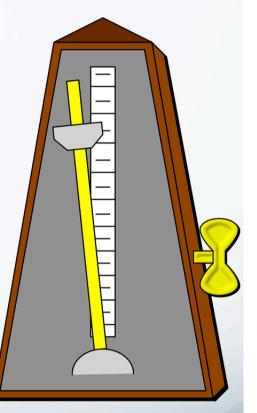
How to get the PROMS

- How to use the PROMS in your own research: <u>www.uibk.ac.at/psychologie/fachbereiche/pdd/</u> <u>personality_assessment/proms/use-the-proms-in-your-own-research/</u>
- Shorter versions (Zentner & Strauss, 2017):
 - Short-PROMS (30 min.) has fewer items per subtest
 - Mini-PROMS (~ 15 min.) has only 4 subtests: melody, tuning, tempo, and accent
 - Modular PROMS: Can choose to focus on specific subtests

The Barcelona Music Reward Questionnaire: Individual differences in ability to enjoy music

Self-report questionnaire; final version comprises 20 items

- Four factors:
 - Musical seeking
 - Emotion evocation
 - Mood regulation
 - Sensory-motor


Mas-Herrero et al. (2013), Music Perception, 31, 118-138

Tests for special populations

- Distorted Tunes Test (Kalmus & Fry, 1980)
 <u>www.nidcd.nih.gov/tunestest/take-distorted-tunes-test</u>
 - Used to test for "tone deafness" or dysmelodia
 - Task: Detect "wrong notes" in familiar melodies
 - Used in an early twin study (Drayna et al., 2001): Scores on this test show a heritability of 71 – 80%
- Montreal Battery for the Evaluation of Amusia (Peretz & Coltheart, 2003)
 - Inspired by the DTT but uses novel melodies
 - Six subtests: 3 on melodic organization, 1 on melodic memory, and 2 on temporal organization

Tapping tests (rhythmic production tasks)

- Beat Alignment Test (Iversen & Patel, 2008)
- BAASTA (Dalla Bella et al., 2016): includes a perception and a production task
 - Production task based on unpaced and paced finger tapping, synchronization-continuation, and adaptive tapping (with tempo changes)
- Measures of tapping skills require precise reaction times to be recorded
 - May be more difficult to ensure with online tests

Singing proficiency tests

- Hutchins & Peretz (2012): pitch-matching task
- Berkowska & Dalla Bella (2013): Sung Performance Battery
 -> based on 5 tasks:
 - Single-pitch matching
 - Pitch-interval matching
 - Novel-melody matching
 - Singing familiar melodies from memory
 - Singing familiar melodies at a given (slow) tempo
 - May be more difficult to implement online

Summary: Overview of the characteristics of the main musical aptitude tests

Test	Format	Sample	Sub- tests	Duration	Reliability	
	-	-		-	Int. Consistency ^b	Test-Retest
SMMT (1919)	Offline, LP	С	6	60 min.	.55 to .84 ^{KR}	NR
STMI (1948)	Offline	С	7	60 min.	.91 ^{Split Half}	.76 to $.88^r$
MAP (1965)	Offline, CD	С	7	60 min.	.66 to $.95^{\alpha}$.77 ^r
KMT (1973, 1975)	Offline, MP3	C & A	1	20 min.	.66 ^{KR}	68 ^{<i>r</i>}
AMMA (1989)	Offline, CD	А	2	20 min.	.83 to $.86^{\alpha}$.79 to $.84^r$
DTT (updated) (2001)	Online, CD	А	1	10 min.	NR	.77 ^r
MBEA (2003) ^a	Offline	А	6	90 min.	NR	.75 ^r
MET (2010)	Offline	А	2	20 min.	.94 to $.96^{\alpha}$	NR
PROMS (2012)	Online	А	9	60 min.	.94 ^α ; 95 ^ω	.88
SMDT (2014)	On/ Offline	А	3	10 min.	.79 to $.89^{\alpha}$	NR
GOLD-MSI (2014)	On/ Offline	А	2	20 min.	.65 to .90 ^α	.60 to $.70^{r}$

Based on Table 1 from Zentner & Gingras (2019)

Outline

• What is musicality and why do we need to measure it?

• Overview of the main musical aptitude tests

Current perspectives and recent developments

Review:

How close are we to the ideal test battery?

- Can be given to individuals with no formal musical training \checkmark
- Has a version for preschool children X
- Wide difficulty range (no floor or ceiling effects) 🗸 (MET, PROMS)
- As culture-independent as possible +

Recent developments: Computerized adaptive testing and item response theory

- Computerized adaptive testing lets the researcher adjust the difficulty level of the stimuli "on the fly" based on the participants' responses
- Each participant thus completes a task comprised of a different collection of test items
- The statistical basis for this type of testing is known as item response theory
 - Responses are modeled for each test item separately and for each individual participant
 - In contrast, the "traditional" method, based on classical test theory, analyzes responses on the entire test over the entire sample of participants

Examples of music perception tests using computerized adaptive testing

- Harrison, Collins, & Müllensiefen (2017): melodic discrimination test
 - Items are generated automatically
- Harrison & Müllensiefen (2018): computerized adaptive beat alignment test
- Larrouy-Maestri et al. (2019): Mistuning perception test

Thank you for your attention!

Questions? Comments?

brunogingras@gmail.com